Solve for α
\alpha =1
Share
Copied to clipboard
\left(2+\alpha \right)^{3}=27
Add 1 and 1 to get 2.
8+12\alpha +6\alpha ^{2}+\alpha ^{3}=27
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2+\alpha \right)^{3}.
8+12\alpha +6\alpha ^{2}+\alpha ^{3}-27=0
Subtract 27 from both sides.
-19+12\alpha +6\alpha ^{2}+\alpha ^{3}=0
Subtract 27 from 8 to get -19.
\alpha ^{3}+6\alpha ^{2}+12\alpha -19=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±19,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -19 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
\alpha =1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
\alpha ^{2}+7\alpha +19=0
By Factor theorem, \alpha -k is a factor of the polynomial for each root k. Divide \alpha ^{3}+6\alpha ^{2}+12\alpha -19 by \alpha -1 to get \alpha ^{2}+7\alpha +19. Solve the equation where the result equals to 0.
\alpha =\frac{-7±\sqrt{7^{2}-4\times 1\times 19}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 7 for b, and 19 for c in the quadratic formula.
\alpha =\frac{-7±\sqrt{-27}}{2}
Do the calculations.
\alpha \in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
\alpha =1
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}