Evaluate
\left(1+i\right)\left(\sqrt{5}-i\right)\left(1+\sqrt{3}i\right)\approx 1.095135439+6.841102131i
Real Part
\sqrt{3} + \sqrt{5} + 1 - \sqrt{15} = 1.095135439
Share
Copied to clipboard
\left(1+i+\left(-1+i\right)\sqrt{3}\right)\left(\sqrt{5}-i\right)
Use the distributive property to multiply 1+i\sqrt{3} by 1+i.
\left(1+i\right)\sqrt{5}+\left(1-i\right)+\left(-1+i\right)\sqrt{3}\sqrt{5}+\left(1+i\right)\sqrt{3}
Apply the distributive property by multiplying each term of 1+i+\left(-1+i\right)\sqrt{3} by each term of \sqrt{5}-i.
\left(1+i\right)\sqrt{5}+\left(1-i\right)+\left(-1+i\right)\sqrt{15}+\left(1+i\right)\sqrt{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}