Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(1+\sqrt{2}+\sqrt{3}+\sqrt{3}\sqrt{2}\right)\left(1-\sqrt{3}\right)\left(1-\sqrt{2}\right)
Apply the distributive property by multiplying each term of 1+\sqrt{3} by each term of 1+\sqrt{2}.
\left(1+\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(1-\sqrt{3}\right)\left(1-\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(1-\sqrt{3}+\sqrt{2}-\sqrt{2}\sqrt{3}+\sqrt{3}-\left(\sqrt{3}\right)^{2}+\sqrt{6}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
Apply the distributive property by multiplying each term of 1+\sqrt{2}+\sqrt{3}+\sqrt{6} by each term of 1-\sqrt{3}.
\left(1-\sqrt{3}+\sqrt{2}-\sqrt{6}+\sqrt{3}-\left(\sqrt{3}\right)^{2}+\sqrt{6}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(1+\sqrt{2}-\sqrt{6}-\left(\sqrt{3}\right)^{2}+\sqrt{6}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
Combine -\sqrt{3} and \sqrt{3} to get 0.
\left(1+\sqrt{2}-\sqrt{6}-3+\sqrt{6}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
The square of \sqrt{3} is 3.
\left(-2+\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
Subtract 3 from 1 to get -2.
\left(-2+\sqrt{2}-\sqrt{6}\sqrt{3}\right)\left(1-\sqrt{2}\right)
Combine -\sqrt{6} and \sqrt{6} to get 0.
\left(-2+\sqrt{2}-\sqrt{3}\sqrt{2}\sqrt{3}\right)\left(1-\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(-2+\sqrt{2}-3\sqrt{2}\right)\left(1-\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(-2-2\sqrt{2}\right)\left(1-\sqrt{2}\right)
Combine \sqrt{2} and -3\sqrt{2} to get -2\sqrt{2}.
-2+2\sqrt{2}-2\sqrt{2}+2\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of -2-2\sqrt{2} by each term of 1-\sqrt{2}.
-2+2\left(\sqrt{2}\right)^{2}
Combine 2\sqrt{2} and -2\sqrt{2} to get 0.
-2+2\times 2
The square of \sqrt{2} is 2.
-2+4
Multiply 2 and 2 to get 4.
2
Add -2 and 4 to get 2.