Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(4-\sqrt{5}\right)^{2}-\sqrt{12}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3-\left(4-\sqrt{5}\right)^{2}-\sqrt{12}
The square of \sqrt{3} is 3.
4+2\sqrt{3}-\left(4-\sqrt{5}\right)^{2}-\sqrt{12}
Add 1 and 3 to get 4.
4+2\sqrt{3}-\left(16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)-\sqrt{12}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{5}\right)^{2}.
4+2\sqrt{3}-\left(16-8\sqrt{5}+5\right)-\sqrt{12}
The square of \sqrt{5} is 5.
4+2\sqrt{3}-\left(21-8\sqrt{5}\right)-\sqrt{12}
Add 16 and 5 to get 21.
4+2\sqrt{3}-21+8\sqrt{5}-\sqrt{12}
To find the opposite of 21-8\sqrt{5}, find the opposite of each term.
-17+2\sqrt{3}+8\sqrt{5}-\sqrt{12}
Subtract 21 from 4 to get -17.
-17+2\sqrt{3}+8\sqrt{5}-2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
-17+8\sqrt{5}
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.