Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2+3\sqrt{2}-\sqrt{6}+\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Use the distributive property to multiply 1+\sqrt{2}+\sqrt{3} by 2+\sqrt{2}-\sqrt{6} and combine like terms.
2+3\sqrt{2}-\sqrt{6}+2-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
The square of \sqrt{2} is 2.
4+3\sqrt{2}-\sqrt{6}-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Add 2 and 2 to get 4.
4+3\sqrt{2}-\sqrt{6}-\sqrt{2}\sqrt{2}\sqrt{3}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
4+3\sqrt{2}-\sqrt{6}-2\sqrt{3}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4+3\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
4+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
4+3\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Combine -\sqrt{6} and \sqrt{6} to get 0.
4+3\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}-\left(\sqrt{3}-1\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4+3\sqrt{2}-3\sqrt{2}-\left(\sqrt{3}-1\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
4-\left(\sqrt{3}-1\right)^{2}
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.
4-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
4-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
4-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
4-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
2\sqrt{3}
Subtract 4 from 4 to get 0.