Evaluate
\sqrt{3}+2\sqrt{6}+3\sqrt{2}+5\approx 15.87367098
Share
Copied to clipboard
\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+2\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
1+2\sqrt{2}+\sqrt{2}+2\left(\sqrt{2}\right)^{2}+\sqrt{3}+2\sqrt{3}\sqrt{2}
Apply the distributive property by multiplying each term of 1+\sqrt{2}+\sqrt{3} by each term of 1+2\sqrt{2}.
1+3\sqrt{2}+2\left(\sqrt{2}\right)^{2}+\sqrt{3}+2\sqrt{3}\sqrt{2}
Combine 2\sqrt{2} and \sqrt{2} to get 3\sqrt{2}.
1+3\sqrt{2}+2\times 2+\sqrt{3}+2\sqrt{3}\sqrt{2}
The square of \sqrt{2} is 2.
1+3\sqrt{2}+4+\sqrt{3}+2\sqrt{3}\sqrt{2}
Multiply 2 and 2 to get 4.
5+3\sqrt{2}+\sqrt{3}+2\sqrt{3}\sqrt{2}
Add 1 and 4 to get 5.
5+3\sqrt{2}+\sqrt{3}+2\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}