( 1 + \sin y ) d x = ( [ 2 y \cos y - x \log y + \tan y ] ) d y
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{2\ln(10)y\left(-y\cos(2y)-\sin(y)-y\right)}{2y\ln(y)\cos(y)+2\ln(10)\cos(y)+\ln(10)\sin(2y)}\text{, }&y\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\frac{\pi \left(2n_{1}+1\right)}{2}\text{ and }2\left(2y\log(y)\cos(y)+\sin(2y)+2\cos(y)\right)\neq 0\\x\in \mathrm{C}\text{, }&d=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}+\frac{\pi }{2}\text{ and }y\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&y>0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}+\frac{\pi }{2}\\d\in \mathrm{R}\text{, }&y>0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\frac{\pi \left(2n_{1}+1\right)}{2}\text{ and }\frac{-4\left(y\cos(y)\right)^{2}+2xy\log(y)\cos(y)+x\sin(2y)+2x\cos(y)-2y\sin(y)}{2}=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\ln(10)y\left(2y\left(\cos(y)\right)^{2}+\sin(y)\right)}{\cos(y)\left(y\ln(y)+\ln(10)\sin(y)+\ln(10)\right)}\text{, }&y>0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}+\frac{\pi }{2}\\x\in \mathrm{R}\text{, }&d=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }y=\pi n_{1}+\frac{\pi }{2}\text{ and }y>0\end{matrix}\right.
Quiz
Trigonometry
5 problems similar to:
( 1 + \sin y ) d x = ( [ 2 y \cos y - x \log y + \tan y ] ) d y
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}