Evaluate
\omega \left(3+\omega ^{2}-3\omega ^{3}-\omega ^{5}\right)
Expand
3\omega +\omega ^{3}-3\omega ^{4}-\omega ^{6}
Share
Copied to clipboard
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+\omega ^{2}\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+\omega \right)^{3}.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\left(\omega ^{2}\right)^{2}+\left(\omega ^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+\omega ^{2}\right)^{3}.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\omega ^{4}+\left(\omega ^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\omega ^{4}+\omega ^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+3\omega +3\omega ^{2}+\omega ^{3}-1-3\omega ^{2}-3\omega ^{4}-\omega ^{6}
To find the opposite of 1+3\omega ^{2}+3\omega ^{4}+\omega ^{6}, find the opposite of each term.
3\omega +3\omega ^{2}+\omega ^{3}-3\omega ^{2}-3\omega ^{4}-\omega ^{6}
Subtract 1 from 1 to get 0.
3\omega +\omega ^{3}-3\omega ^{4}-\omega ^{6}
Combine 3\omega ^{2} and -3\omega ^{2} to get 0.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+\omega ^{2}\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+\omega \right)^{3}.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\left(\omega ^{2}\right)^{2}+\left(\omega ^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+\omega ^{2}\right)^{3}.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\omega ^{4}+\left(\omega ^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+3\omega +3\omega ^{2}+\omega ^{3}-\left(1+3\omega ^{2}+3\omega ^{4}+\omega ^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
1+3\omega +3\omega ^{2}+\omega ^{3}-1-3\omega ^{2}-3\omega ^{4}-\omega ^{6}
To find the opposite of 1+3\omega ^{2}+3\omega ^{4}+\omega ^{6}, find the opposite of each term.
3\omega +3\omega ^{2}+\omega ^{3}-3\omega ^{2}-3\omega ^{4}-\omega ^{6}
Subtract 1 from 1 to get 0.
3\omega +\omega ^{3}-3\omega ^{4}-\omega ^{6}
Combine 3\omega ^{2} and -3\omega ^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}