Solve for n
n=\frac{k}{4\left(\sqrt{e}-1\right)}
k\neq 0
Solve for k
k=4\left(\sqrt{e}-1\right)n
n\neq 0
Share
Copied to clipboard
4n+k=4n\sqrt{e}
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4n.
4n+k-4n\sqrt{e}=0
Subtract 4n\sqrt{e} from both sides.
4n-4n\sqrt{e}=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
\left(4-4\sqrt{e}\right)n=-k
Combine all terms containing n.
\left(-4\sqrt{e}+4\right)n=-k
The equation is in standard form.
\frac{\left(-4\sqrt{e}+4\right)n}{-4\sqrt{e}+4}=-\frac{k}{-4\sqrt{e}+4}
Divide both sides by 4-4\sqrt{e}.
n=-\frac{k}{-4\sqrt{e}+4}
Dividing by 4-4\sqrt{e} undoes the multiplication by 4-4\sqrt{e}.
n=\frac{k}{4\left(\sqrt{e}-1\right)}
Divide -k by 4-4\sqrt{e}.
n=\frac{k}{4\left(\sqrt{e}-1\right)}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}