Evaluate
\frac{4ab}{a^{2}-b^{2}}
Expand
\frac{4ab}{a^{2}-b^{2}}
Share
Copied to clipboard
\left(\frac{a-b}{a-b}+\frac{a+b}{a-b}\right)\left(2-\frac{2a}{a+b}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-b}{a-b}.
\frac{a-b+a+b}{a-b}\left(2-\frac{2a}{a+b}\right)
Since \frac{a-b}{a-b} and \frac{a+b}{a-b} have the same denominator, add them by adding their numerators.
\frac{2a}{a-b}\left(2-\frac{2a}{a+b}\right)
Combine like terms in a-b+a+b.
\frac{2a}{a-b}\left(\frac{2\left(a+b\right)}{a+b}-\frac{2a}{a+b}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a+b}{a+b}.
\frac{2a}{a-b}\times \frac{2\left(a+b\right)-2a}{a+b}
Since \frac{2\left(a+b\right)}{a+b} and \frac{2a}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{2a}{a-b}\times \frac{2a+2b-2a}{a+b}
Do the multiplications in 2\left(a+b\right)-2a.
\frac{2a}{a-b}\times \frac{2b}{a+b}
Combine like terms in 2a+2b-2a.
\frac{2a\times 2b}{\left(a-b\right)\left(a+b\right)}
Multiply \frac{2a}{a-b} times \frac{2b}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{4ab}{\left(a-b\right)\left(a+b\right)}
Multiply 2 and 2 to get 4.
\frac{4ab}{a^{2}-b^{2}}
Consider \left(a-b\right)\left(a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{a-b}{a-b}+\frac{a+b}{a-b}\right)\left(2-\frac{2a}{a+b}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-b}{a-b}.
\frac{a-b+a+b}{a-b}\left(2-\frac{2a}{a+b}\right)
Since \frac{a-b}{a-b} and \frac{a+b}{a-b} have the same denominator, add them by adding their numerators.
\frac{2a}{a-b}\left(2-\frac{2a}{a+b}\right)
Combine like terms in a-b+a+b.
\frac{2a}{a-b}\left(\frac{2\left(a+b\right)}{a+b}-\frac{2a}{a+b}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a+b}{a+b}.
\frac{2a}{a-b}\times \frac{2\left(a+b\right)-2a}{a+b}
Since \frac{2\left(a+b\right)}{a+b} and \frac{2a}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{2a}{a-b}\times \frac{2a+2b-2a}{a+b}
Do the multiplications in 2\left(a+b\right)-2a.
\frac{2a}{a-b}\times \frac{2b}{a+b}
Combine like terms in 2a+2b-2a.
\frac{2a\times 2b}{\left(a-b\right)\left(a+b\right)}
Multiply \frac{2a}{a-b} times \frac{2b}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{4ab}{\left(a-b\right)\left(a+b\right)}
Multiply 2 and 2 to get 4.
\frac{4ab}{a^{2}-b^{2}}
Consider \left(a-b\right)\left(a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}