Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{x-y}{x-y}+\frac{2y}{x-y}\right)\times \frac{1-\frac{2xy}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-y}{x-y}.
\frac{x-y+2y}{x-y}\times \frac{1-\frac{2xy}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
Since \frac{x-y}{x-y} and \frac{2y}{x-y} have the same denominator, add them by adding their numerators.
\frac{x+y}{x-y}\times \frac{1-\frac{2xy}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
Combine like terms in x-y+2y.
\frac{x+y}{x-y}\times \frac{\frac{x^{2}+xy+y^{2}}{x^{2}+xy+y^{2}}-\frac{2xy}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}+xy+y^{2}}{x^{2}+xy+y^{2}}.
\frac{x+y}{x-y}\times \frac{\frac{x^{2}+xy+y^{2}-2xy}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
Since \frac{x^{2}+xy+y^{2}}{x^{2}+xy+y^{2}} and \frac{2xy}{x^{2}+xy+y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x+y}{x-y}\times \frac{\frac{-xy+x^{2}+y^{2}}{x^{2}+xy+y^{2}}}{\frac{x^{3}+y^{3}}{x^{3}-y^{3}}}
Combine like terms in x^{2}+xy+y^{2}-2xy.
\frac{x+y}{x-y}\times \frac{\left(-xy+x^{2}+y^{2}\right)\left(x^{3}-y^{3}\right)}{\left(x^{2}+xy+y^{2}\right)\left(x^{3}+y^{3}\right)}
Divide \frac{-xy+x^{2}+y^{2}}{x^{2}+xy+y^{2}} by \frac{x^{3}+y^{3}}{x^{3}-y^{3}} by multiplying \frac{-xy+x^{2}+y^{2}}{x^{2}+xy+y^{2}} by the reciprocal of \frac{x^{3}+y^{3}}{x^{3}-y^{3}}.
\frac{x+y}{x-y}\times \frac{\left(x-y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)}
Factor the expressions that are not already factored in \frac{\left(-xy+x^{2}+y^{2}\right)\left(x^{3}-y^{3}\right)}{\left(x^{2}+xy+y^{2}\right)\left(x^{3}+y^{3}\right)}.
\frac{x+y}{x-y}\times \frac{x-y}{x+y}
Cancel out \left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right) in both numerator and denominator.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}
Multiply \frac{x+y}{x-y} times \frac{x-y}{x+y} by multiplying numerator times numerator and denominator times denominator.
1
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.