Evaluate
-\frac{x}{1-x}
Expand
-\frac{x}{1-x}
Graph
Quiz
Polynomial
5 problems similar to:
( 1 + \frac { 1 } { x } ) ( 1 - \frac { 1 } { 1 - x ^ { 2 } } )
Share
Copied to clipboard
\left(\frac{x}{x}+\frac{1}{x}\right)\left(1-\frac{1}{1-x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{x+1}{x}\left(1-\frac{1}{1-x^{2}}\right)
Since \frac{x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x+1}{x}\left(1-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
Factor 1-x^{2}.
\frac{x+1}{x}\left(\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{x+1}{x}\times \frac{\left(x-1\right)\left(-x-1\right)-1}{\left(x-1\right)\left(-x-1\right)}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{1}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1}{x}\times \frac{-x^{2}-x+x+1-1}{\left(x-1\right)\left(-x-1\right)}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-1.
\frac{x+1}{x}\times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}
Combine like terms in -x^{2}-x+x+1-1.
\frac{\left(x+1\right)\left(-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Multiply \frac{x+1}{x} times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(-x-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in x+1.
\frac{-\left(-1\right)x}{x-1}
Cancel out x\left(-x-1\right) in both numerator and denominator.
\frac{x}{x-1}
Multiply -1 and -1 to get 1.
\left(\frac{x}{x}+\frac{1}{x}\right)\left(1-\frac{1}{1-x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{x+1}{x}\left(1-\frac{1}{1-x^{2}}\right)
Since \frac{x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x+1}{x}\left(1-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
Factor 1-x^{2}.
\frac{x+1}{x}\left(\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{x+1}{x}\times \frac{\left(x-1\right)\left(-x-1\right)-1}{\left(x-1\right)\left(-x-1\right)}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{1}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1}{x}\times \frac{-x^{2}-x+x+1-1}{\left(x-1\right)\left(-x-1\right)}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-1.
\frac{x+1}{x}\times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}
Combine like terms in -x^{2}-x+x+1-1.
\frac{\left(x+1\right)\left(-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Multiply \frac{x+1}{x} times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(-x-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in x+1.
\frac{-\left(-1\right)x}{x-1}
Cancel out x\left(-x-1\right) in both numerator and denominator.
\frac{x}{x-1}
Multiply -1 and -1 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}