Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x}{x}+\frac{1}{x}\right)\left(1-\frac{1}{1-x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{x+1}{x}\left(1-\frac{1}{1-x^{2}}\right)
Since \frac{x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x+1}{x}\left(1-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
Factor 1-x^{2}.
\frac{x+1}{x}\left(\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{x+1}{x}\times \frac{\left(x-1\right)\left(-x-1\right)-1}{\left(x-1\right)\left(-x-1\right)}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{1}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1}{x}\times \frac{-x^{2}-x+x+1-1}{\left(x-1\right)\left(-x-1\right)}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-1.
\frac{x+1}{x}\times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}
Combine like terms in -x^{2}-x+x+1-1.
\frac{\left(x+1\right)\left(-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Multiply \frac{x+1}{x} times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(-x-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in x+1.
\frac{-\left(-1\right)x}{x-1}
Cancel out x\left(-x-1\right) in both numerator and denominator.
\frac{x}{x-1}
Multiply -1 and -1 to get 1.
\left(\frac{x}{x}+\frac{1}{x}\right)\left(1-\frac{1}{1-x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{x+1}{x}\left(1-\frac{1}{1-x^{2}}\right)
Since \frac{x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x+1}{x}\left(1-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
Factor 1-x^{2}.
\frac{x+1}{x}\left(\frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{1}{\left(x-1\right)\left(-x-1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{x+1}{x}\times \frac{\left(x-1\right)\left(-x-1\right)-1}{\left(x-1\right)\left(-x-1\right)}
Since \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{1}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+1}{x}\times \frac{-x^{2}-x+x+1-1}{\left(x-1\right)\left(-x-1\right)}
Do the multiplications in \left(x-1\right)\left(-x-1\right)-1.
\frac{x+1}{x}\times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)}
Combine like terms in -x^{2}-x+x+1-1.
\frac{\left(x+1\right)\left(-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Multiply \frac{x+1}{x} times \frac{-x^{2}}{\left(x-1\right)\left(-x-1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(-x-1\right)x^{2}}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in x+1.
\frac{-\left(-1\right)x}{x-1}
Cancel out x\left(-x-1\right) in both numerator and denominator.
\frac{x}{x-1}
Multiply -1 and -1 to get 1.