Evaluate
-\frac{1}{a-1}
Expand
-\frac{1}{a-1}
Share
Copied to clipboard
\frac{\left(1+\frac{1}{a}\right)a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Divide 1+\frac{1}{a} by \frac{a^{2}-1}{a} by multiplying 1+\frac{1}{a} by the reciprocal of \frac{a^{2}-1}{a}.
\frac{\left(\frac{a}{a}+\frac{1}{a}\right)a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{a+1}{a}a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{a+1}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Cancel out a and a.
\frac{a+1}{\left(a-1\right)\left(a+1\right)}-\frac{2a-2}{a^{2}-2a+1}
Factor the expressions that are not already factored in \frac{a+1}{a^{2}-1}.
\frac{1}{a-1}-\frac{2a-2}{a^{2}-2a+1}
Cancel out a+1 in both numerator and denominator.
\frac{1}{a-1}-\frac{2\left(a-1\right)}{\left(a-1\right)^{2}}
Factor the expressions that are not already factored in \frac{2a-2}{a^{2}-2a+1}.
\frac{1}{a-1}-\frac{2}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-1}{a-1}
Since \frac{1}{a-1} and \frac{2}{a-1} have the same denominator, subtract them by subtracting their numerators. Subtract 2 from 1 to get -1.
\frac{\left(1+\frac{1}{a}\right)a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Divide 1+\frac{1}{a} by \frac{a^{2}-1}{a} by multiplying 1+\frac{1}{a} by the reciprocal of \frac{a^{2}-1}{a}.
\frac{\left(\frac{a}{a}+\frac{1}{a}\right)a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{a+1}{a}a}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{a+1}{a^{2}-1}-\frac{2a-2}{a^{2}-2a+1}
Cancel out a and a.
\frac{a+1}{\left(a-1\right)\left(a+1\right)}-\frac{2a-2}{a^{2}-2a+1}
Factor the expressions that are not already factored in \frac{a+1}{a^{2}-1}.
\frac{1}{a-1}-\frac{2a-2}{a^{2}-2a+1}
Cancel out a+1 in both numerator and denominator.
\frac{1}{a-1}-\frac{2\left(a-1\right)}{\left(a-1\right)^{2}}
Factor the expressions that are not already factored in \frac{2a-2}{a^{2}-2a+1}.
\frac{1}{a-1}-\frac{2}{a-1}
Cancel out a-1 in both numerator and denominator.
\frac{-1}{a-1}
Since \frac{1}{a-1} and \frac{2}{a-1} have the same denominator, subtract them by subtracting their numerators. Subtract 2 from 1 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}