Solve for m
m=4+\sqrt{113}i\approx 4+10.630145813i
m=-\sqrt{113}i+4\approx 4-10.630145813i
Share
Copied to clipboard
1000+300m-100m^{2}+\left(1+m\right)\left(800-300\right)=14400
Use the distributive property to multiply 1+\frac{1}{2}m by 1000-200m and combine like terms.
1000+300m-100m^{2}+\left(1+m\right)\times 500=14400
Subtract 300 from 800 to get 500.
1000+300m-100m^{2}+500+500m=14400
Use the distributive property to multiply 1+m by 500.
1500+300m-100m^{2}+500m=14400
Add 1000 and 500 to get 1500.
1500+800m-100m^{2}=14400
Combine 300m and 500m to get 800m.
1500+800m-100m^{2}-14400=0
Subtract 14400 from both sides.
-12900+800m-100m^{2}=0
Subtract 14400 from 1500 to get -12900.
-100m^{2}+800m-12900=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-800±\sqrt{800^{2}-4\left(-100\right)\left(-12900\right)}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, 800 for b, and -12900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-800±\sqrt{640000-4\left(-100\right)\left(-12900\right)}}{2\left(-100\right)}
Square 800.
m=\frac{-800±\sqrt{640000+400\left(-12900\right)}}{2\left(-100\right)}
Multiply -4 times -100.
m=\frac{-800±\sqrt{640000-5160000}}{2\left(-100\right)}
Multiply 400 times -12900.
m=\frac{-800±\sqrt{-4520000}}{2\left(-100\right)}
Add 640000 to -5160000.
m=\frac{-800±200\sqrt{113}i}{2\left(-100\right)}
Take the square root of -4520000.
m=\frac{-800±200\sqrt{113}i}{-200}
Multiply 2 times -100.
m=\frac{-800+200\sqrt{113}i}{-200}
Now solve the equation m=\frac{-800±200\sqrt{113}i}{-200} when ± is plus. Add -800 to 200i\sqrt{113}.
m=-\sqrt{113}i+4
Divide -800+200i\sqrt{113} by -200.
m=\frac{-200\sqrt{113}i-800}{-200}
Now solve the equation m=\frac{-800±200\sqrt{113}i}{-200} when ± is minus. Subtract 200i\sqrt{113} from -800.
m=4+\sqrt{113}i
Divide -800-200i\sqrt{113} by -200.
m=-\sqrt{113}i+4 m=4+\sqrt{113}i
The equation is now solved.
1000+300m-100m^{2}+\left(1+m\right)\left(800-300\right)=14400
Use the distributive property to multiply 1+\frac{1}{2}m by 1000-200m and combine like terms.
1000+300m-100m^{2}+\left(1+m\right)\times 500=14400
Subtract 300 from 800 to get 500.
1000+300m-100m^{2}+500+500m=14400
Use the distributive property to multiply 1+m by 500.
1500+300m-100m^{2}+500m=14400
Add 1000 and 500 to get 1500.
1500+800m-100m^{2}=14400
Combine 300m and 500m to get 800m.
800m-100m^{2}=14400-1500
Subtract 1500 from both sides.
800m-100m^{2}=12900
Subtract 1500 from 14400 to get 12900.
-100m^{2}+800m=12900
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100m^{2}+800m}{-100}=\frac{12900}{-100}
Divide both sides by -100.
m^{2}+\frac{800}{-100}m=\frac{12900}{-100}
Dividing by -100 undoes the multiplication by -100.
m^{2}-8m=\frac{12900}{-100}
Divide 800 by -100.
m^{2}-8m=-129
Divide 12900 by -100.
m^{2}-8m+\left(-4\right)^{2}=-129+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=-129+16
Square -4.
m^{2}-8m+16=-113
Add -129 to 16.
\left(m-4\right)^{2}=-113
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{-113}
Take the square root of both sides of the equation.
m-4=\sqrt{113}i m-4=-\sqrt{113}i
Simplify.
m=4+\sqrt{113}i m=-\sqrt{113}i+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}