Solve for x
x = \frac{21}{4} = 5\frac{1}{4} = 5.25
Graph
Share
Copied to clipboard
6\left(1+\frac{1}{2}\right)x+12=2\left(1-\frac{1}{2}\right)x+54
Multiply both sides of the equation by 6, the least common multiple of 2,3.
6\left(\frac{2}{2}+\frac{1}{2}\right)x+12=2\left(1-\frac{1}{2}\right)x+54
Convert 1 to fraction \frac{2}{2}.
6\times \frac{2+1}{2}x+12=2\left(1-\frac{1}{2}\right)x+54
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
6\times \frac{3}{2}x+12=2\left(1-\frac{1}{2}\right)x+54
Add 2 and 1 to get 3.
\frac{6\times 3}{2}x+12=2\left(1-\frac{1}{2}\right)x+54
Express 6\times \frac{3}{2} as a single fraction.
\frac{18}{2}x+12=2\left(1-\frac{1}{2}\right)x+54
Multiply 6 and 3 to get 18.
9x+12=2\left(1-\frac{1}{2}\right)x+54
Divide 18 by 2 to get 9.
9x+12=2\left(\frac{2}{2}-\frac{1}{2}\right)x+54
Convert 1 to fraction \frac{2}{2}.
9x+12=2\times \frac{2-1}{2}x+54
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
9x+12=2\times \frac{1}{2}x+54
Subtract 1 from 2 to get 1.
9x+12=x+54
Cancel out 2 and 2.
9x+12-x=54
Subtract x from both sides.
8x+12=54
Combine 9x and -x to get 8x.
8x=54-12
Subtract 12 from both sides.
8x=42
Subtract 12 from 54 to get 42.
x=\frac{42}{8}
Divide both sides by 8.
x=\frac{21}{4}
Reduce the fraction \frac{42}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}