Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2}{2}+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Add 2 and 1 to get 3.
\frac{3}{2}\left(\frac{2}{2}-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{3}{2}\times \frac{2-1}{2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}\times \frac{1}{2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Subtract 1 from 2 to get 1.
\frac{3\times 1}{2\times 2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Multiply \frac{3}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Do the multiplications in the fraction \frac{3\times 1}{2\times 2}.
\frac{3}{4}\left(\frac{3}{3}+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3}{4}\times \frac{3+1}{3}\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{3}{4}\times \frac{4}{3}\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Add 3 and 1 to get 4.
\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Cancel out \frac{3}{4} and its reciprocal \frac{4}{3}.
\left(\frac{3}{3}-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3-1}{3}L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Subtract 1 from 3 to get 2.
\frac{2}{3}L\left(\frac{99}{99}+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{99}{99}.
\frac{2}{3}L\times \frac{99+1}{99}\left(1-\frac{1}{99}\right)
Since \frac{99}{99} and \frac{1}{99} have the same denominator, add them by adding their numerators.
\frac{2}{3}L\times \frac{100}{99}\left(1-\frac{1}{99}\right)
Add 99 and 1 to get 100.
\frac{2\times 100}{3\times 99}L\left(1-\frac{1}{99}\right)
Multiply \frac{2}{3} times \frac{100}{99} by multiplying numerator times numerator and denominator times denominator.
\frac{200}{297}L\left(1-\frac{1}{99}\right)
Do the multiplications in the fraction \frac{2\times 100}{3\times 99}.
\frac{200}{297}L\left(\frac{99}{99}-\frac{1}{99}\right)
Convert 1 to fraction \frac{99}{99}.
\frac{200}{297}L\times \frac{99-1}{99}
Since \frac{99}{99} and \frac{1}{99} have the same denominator, subtract them by subtracting their numerators.
\frac{200}{297}L\times \frac{98}{99}
Subtract 1 from 99 to get 98.
\frac{200\times 98}{297\times 99}L
Multiply \frac{200}{297} times \frac{98}{99} by multiplying numerator times numerator and denominator times denominator.
\frac{19600}{29403}L
Do the multiplications in the fraction \frac{200\times 98}{297\times 99}.
\left(\frac{2}{2}+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Add 2 and 1 to get 3.
\frac{3}{2}\left(\frac{2}{2}-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{3}{2}\times \frac{2-1}{2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}\times \frac{1}{2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Subtract 1 from 2 to get 1.
\frac{3\times 1}{2\times 2}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Multiply \frac{3}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(1+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Do the multiplications in the fraction \frac{3\times 1}{2\times 2}.
\frac{3}{4}\left(\frac{3}{3}+\frac{1}{3}\right)\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3}{4}\times \frac{3+1}{3}\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{3}{4}\times \frac{4}{3}\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Add 3 and 1 to get 4.
\left(1-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Cancel out \frac{3}{4} and its reciprocal \frac{4}{3}.
\left(\frac{3}{3}-\frac{1}{3}\right)L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3-1}{3}L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}L\left(1+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Subtract 1 from 3 to get 2.
\frac{2}{3}L\left(\frac{99}{99}+\frac{1}{99}\right)\left(1-\frac{1}{99}\right)
Convert 1 to fraction \frac{99}{99}.
\frac{2}{3}L\times \frac{99+1}{99}\left(1-\frac{1}{99}\right)
Since \frac{99}{99} and \frac{1}{99} have the same denominator, add them by adding their numerators.
\frac{2}{3}L\times \frac{100}{99}\left(1-\frac{1}{99}\right)
Add 99 and 1 to get 100.
\frac{2\times 100}{3\times 99}L\left(1-\frac{1}{99}\right)
Multiply \frac{2}{3} times \frac{100}{99} by multiplying numerator times numerator and denominator times denominator.
\frac{200}{297}L\left(1-\frac{1}{99}\right)
Do the multiplications in the fraction \frac{2\times 100}{3\times 99}.
\frac{200}{297}L\left(\frac{99}{99}-\frac{1}{99}\right)
Convert 1 to fraction \frac{99}{99}.
\frac{200}{297}L\times \frac{99-1}{99}
Since \frac{99}{99} and \frac{1}{99} have the same denominator, subtract them by subtracting their numerators.
\frac{200}{297}L\times \frac{98}{99}
Subtract 1 from 99 to get 98.
\frac{200\times 98}{297\times 99}L
Multiply \frac{200}{297} times \frac{98}{99} by multiplying numerator times numerator and denominator times denominator.
\frac{19600}{29403}L
Do the multiplications in the fraction \frac{200\times 98}{297\times 99}.