( 1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } ) \times ( \frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 } ) - ( 1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 } \times ( \frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } )
Evaluate
\frac{269}{720}\approx 0.373611111
Factor
\frac{269}{2 ^ {4} \cdot 3 ^ {2} \cdot 5} = 0.3736111111111111
Share
Copied to clipboard
\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Convert 1 to fraction \frac{2}{2}.
\left(\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 2 and 1 to get 3.
\left(\frac{9}{6}+\frac{2}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\left(\frac{9+2}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{11}{6}+\frac{1}{4}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 9 and 2 to get 11.
\left(\frac{22}{12}+\frac{3}{12}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{22+3}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{25}{12}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 22 and 3 to get 25.
\frac{25}{12}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{25}{12}\left(\frac{3+2}{6}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{25}{12}\left(\frac{5}{6}+\frac{1}{4}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 3 and 2 to get 5.
\frac{25}{12}\left(\frac{10}{12}+\frac{3}{12}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{25}{12}\left(\frac{10+3}{12}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{25}{12}\left(\frac{13}{12}+\frac{1}{5}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 10 and 3 to get 13.
\frac{25}{12}\left(\frac{65}{60}+\frac{12}{60}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{25}{12}\times \frac{65+12}{60}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{65}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{25}{12}\times \frac{77}{60}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 65 and 12 to get 77.
\frac{25\times 77}{12\times 60}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Multiply \frac{25}{12} times \frac{77}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{1925}{720}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Do the multiplications in the fraction \frac{25\times 77}{12\times 60}.
\frac{385}{144}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Reduce the fraction \frac{1925}{720} to lowest terms by extracting and canceling out 5.
\frac{385}{144}-\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Convert 1 to fraction \frac{2}{2}.
\frac{385}{144}-\left(\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 2 and 1 to get 3.
\frac{385}{144}-\left(\frac{9}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{385}{144}-\left(\frac{9+2}{6}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\left(\frac{11}{6}+\frac{1}{4}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 9 and 2 to get 11.
\frac{385}{144}-\left(\frac{22}{12}+\frac{3}{12}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{385}{144}-\left(\frac{22+3}{12}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right)
Add 22 and 3 to get 25.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}\right)\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\left(\frac{3+2}{6}+\frac{1}{4}\right)\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\left(\frac{5}{6}+\frac{1}{4}\right)\right)
Add 3 and 2 to get 5.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\left(\frac{10}{12}+\frac{3}{12}\right)\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\times \frac{10+3}{12}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1}{5}\times \frac{13}{12}\right)
Add 10 and 3 to get 13.
\frac{385}{144}-\left(\frac{25}{12}+\frac{1\times 13}{5\times 12}\right)
Multiply \frac{1}{5} times \frac{13}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{385}{144}-\left(\frac{25}{12}+\frac{13}{60}\right)
Do the multiplications in the fraction \frac{1\times 13}{5\times 12}.
\frac{385}{144}-\left(\frac{125}{60}+\frac{13}{60}\right)
Least common multiple of 12 and 60 is 60. Convert \frac{25}{12} and \frac{13}{60} to fractions with denominator 60.
\frac{385}{144}-\frac{125+13}{60}
Since \frac{125}{60} and \frac{13}{60} have the same denominator, add them by adding their numerators.
\frac{385}{144}-\frac{138}{60}
Add 125 and 13 to get 138.
\frac{385}{144}-\frac{23}{10}
Reduce the fraction \frac{138}{60} to lowest terms by extracting and canceling out 6.
\frac{1925}{720}-\frac{1656}{720}
Least common multiple of 144 and 10 is 720. Convert \frac{385}{144} and \frac{23}{10} to fractions with denominator 720.
\frac{1925-1656}{720}
Since \frac{1925}{720} and \frac{1656}{720} have the same denominator, subtract them by subtracting their numerators.
\frac{269}{720}
Subtract 1656 from 1925 to get 269.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}