Solve for f
f=-\frac{3}{e^{0.016667}}+40\approx 37.049586622
Share
Copied to clipboard
\left(40-f\right)e^{0.1\times 0.16667}=3
Multiply 0.8 and 50 to get 40.
\left(40-f\right)e^{0.016667}=3
Multiply 0.1 and 0.16667 to get 0.016667.
40e^{0.016667}-fe^{0.016667}=3
Use the distributive property to multiply 40-f by e^{0.016667}.
-fe^{0.016667}=3-40e^{0.016667}
Subtract 40e^{0.016667} from both sides.
\left(-e^{0.016667}\right)f=-40e^{0.016667}+3
The equation is in standard form.
\frac{\left(-e^{0.016667}\right)f}{-e^{0.016667}}=\frac{-40e^{0.016667}+3}{-e^{0.016667}}
Divide both sides by -e^{0.016667}.
f=\frac{-40e^{0.016667}+3}{-e^{0.016667}}
Dividing by -e^{0.016667} undoes the multiplication by -e^{0.016667}.
f=-\frac{3}{e^{0.016667}}+40
Divide 3-40e^{0.016667} by -e^{0.016667}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}