Evaluate
\frac{1}{24}\approx 0.041666667
Factor
\frac{1}{3 \cdot 2 ^ {3}} = 0.041666666666666664
Share
Copied to clipboard
\left(\frac{1}{2}+\frac{1}{3}\right)\times 0.25-\frac{1}{6}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\left(\frac{3}{6}+\frac{2}{6}\right)\times 0.25-\frac{1}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3+2}{6}\times 0.25-\frac{1}{6}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}\times 0.25-\frac{1}{6}
Add 3 and 2 to get 5.
\frac{5}{6}\times \frac{1}{4}-\frac{1}{6}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{5\times 1}{6\times 4}-\frac{1}{6}
Multiply \frac{5}{6} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{24}-\frac{1}{6}
Do the multiplications in the fraction \frac{5\times 1}{6\times 4}.
\frac{5}{24}-\frac{4}{24}
Least common multiple of 24 and 6 is 24. Convert \frac{5}{24} and \frac{1}{6} to fractions with denominator 24.
\frac{5-4}{24}
Since \frac{5}{24} and \frac{4}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{24}
Subtract 4 from 5 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}