Evaluate
0.6875
Factor
\frac{11}{2 ^ {4}} = 0.6875
Share
Copied to clipboard
\frac{\left(\frac{2}{5}+\frac{7}{10}\right)\times \frac{7}{4}}{\frac{14}{5}}
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{\left(\frac{4}{10}+\frac{7}{10}\right)\times \frac{7}{4}}{\frac{14}{5}}
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{7}{10} to fractions with denominator 10.
\frac{\frac{4+7}{10}\times \frac{7}{4}}{\frac{14}{5}}
Since \frac{4}{10} and \frac{7}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{10}\times \frac{7}{4}}{\frac{14}{5}}
Add 4 and 7 to get 11.
\frac{\frac{11\times 7}{10\times 4}}{\frac{14}{5}}
Multiply \frac{11}{10} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{77}{40}}{\frac{14}{5}}
Do the multiplications in the fraction \frac{11\times 7}{10\times 4}.
\frac{77}{40}\times \frac{5}{14}
Divide \frac{77}{40} by \frac{14}{5} by multiplying \frac{77}{40} by the reciprocal of \frac{14}{5}.
\frac{77\times 5}{40\times 14}
Multiply \frac{77}{40} times \frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{385}{560}
Do the multiplications in the fraction \frac{77\times 5}{40\times 14}.
\frac{11}{16}
Reduce the fraction \frac{385}{560} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}