Evaluate
\frac{m^{2}}{100}-\frac{4n^{2}}{9}
Expand
\frac{m^{2}}{100}-\frac{4n^{2}}{9}
Share
Copied to clipboard
\left(0.1m\right)^{2}-\left(\frac{2}{3}n\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
0.1^{2}m^{2}-\left(\frac{2}{3}n\right)^{2}
Expand \left(0.1m\right)^{2}.
0.01m^{2}-\left(\frac{2}{3}n\right)^{2}
Calculate 0.1 to the power of 2 and get 0.01.
0.01m^{2}-\left(\frac{2}{3}\right)^{2}n^{2}
Expand \left(\frac{2}{3}n\right)^{2}.
0.01m^{2}-\frac{4}{9}n^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\left(0.1m\right)^{2}-\left(\frac{2}{3}n\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
0.1^{2}m^{2}-\left(\frac{2}{3}n\right)^{2}
Expand \left(0.1m\right)^{2}.
0.01m^{2}-\left(\frac{2}{3}n\right)^{2}
Calculate 0.1 to the power of 2 and get 0.01.
0.01m^{2}-\left(\frac{2}{3}\right)^{2}n^{2}
Expand \left(\frac{2}{3}n\right)^{2}.
0.01m^{2}-\frac{4}{9}n^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}