Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(0,5y\right)^{2}-\left(\sqrt{0,36+0,64}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
0,5^{2}y^{2}-\left(\sqrt{0,36+0,64}\right)^{2}
Expand \left(0,5y\right)^{2}.
0,25y^{2}-\left(\sqrt{0,36+0,64}\right)^{2}
Calculate 0,5 to the power of 2 and get 0,25.
0,25y^{2}-\left(\sqrt{1}\right)^{2}
Add 0,36 and 0,64 to get 1.
0,25y^{2}-1
The square of \sqrt{1} is 1.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(0,5y\right)^{2}-\left(\sqrt{0,36+0,64}\right)^{2})
Consider \left(0,5y+\sqrt{0,36+0,64}\right)\left(0,5y-\sqrt{0,36+0,64}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(0,5^{2}y^{2}-\left(\sqrt{0,36+0,64}\right)^{2})
Expand \left(0,5y\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(0,25y^{2}-\left(\sqrt{0,36+0,64}\right)^{2})
Calculate 0,5 to the power of 2 and get 0,25.
\frac{\mathrm{d}}{\mathrm{d}y}(0,25y^{2}-\left(\sqrt{1}\right)^{2})
Add 0,36 and 0,64 to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(0,25y^{2}-1)
The square of \sqrt{1} is 1.
2\times 0,25y^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
0,5y^{2-1}
Multiply 2 times 0,25.
0,5y^{1}
Subtract 1 from 2.
0,5y
For any term t, t^{1}=t.