( 0,2 x - 1 ) ( 0,2 x + 1 ) - ( \frac { 1 } { 5 } x - 1 ) ^ { 2 } + ( x + 1 ) ^ { 3 } - ( x - 1 ) ^ { 3 } - \frac { 2 } { 5 } x
Evaluate
6x^{2}
Expand
6x^{2}
Graph
Share
Copied to clipboard
\left(0,2x\right)^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Consider \left(0,2x-1\right)\left(0,2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
0,2^{2}x^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Expand \left(0,2x\right)^{2}.
0,04x^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Calculate 0,2 to the power of 2 and get 0,04.
0,04x^{2}-1-\left(\frac{1}{25}x^{2}-\frac{2}{5}x+1\right)+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}x-1\right)^{2}.
0,04x^{2}-1-\frac{1}{25}x^{2}+\frac{2}{5}x-1+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
To find the opposite of \frac{1}{25}x^{2}-\frac{2}{5}x+1, find the opposite of each term.
-1+\frac{2}{5}x-1+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Combine 0,04x^{2} and -\frac{1}{25}x^{2} to get 0.
-2+\frac{2}{5}x+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Subtract 1 from -1 to get -2.
-2+\frac{2}{5}x+x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}-\frac{2}{5}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
-2+\frac{17}{5}x+x^{3}+3x^{2}+1-\left(x-1\right)^{3}-\frac{2}{5}x
Combine \frac{2}{5}x and 3x to get \frac{17}{5}x.
-1+\frac{17}{5}x+x^{3}+3x^{2}-\left(x-1\right)^{3}-\frac{2}{5}x
Add -2 and 1 to get -1.
-1+\frac{17}{5}x+x^{3}+3x^{2}-\left(x^{3}-3x^{2}+3x-1\right)-\frac{2}{5}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
-1+\frac{17}{5}x+x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1-\frac{2}{5}x
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
-1+\frac{17}{5}x+3x^{2}+3x^{2}-3x+1-\frac{2}{5}x
Combine x^{3} and -x^{3} to get 0.
-1+\frac{17}{5}x+6x^{2}-3x+1-\frac{2}{5}x
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
-1+\frac{2}{5}x+6x^{2}+1-\frac{2}{5}x
Combine \frac{17}{5}x and -3x to get \frac{2}{5}x.
\frac{2}{5}x+6x^{2}-\frac{2}{5}x
Add -1 and 1 to get 0.
6x^{2}
Combine \frac{2}{5}x and -\frac{2}{5}x to get 0.
\left(0,2x\right)^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Consider \left(0,2x-1\right)\left(0,2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
0,2^{2}x^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Expand \left(0,2x\right)^{2}.
0,04x^{2}-1-\left(\frac{1}{5}x-1\right)^{2}+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Calculate 0,2 to the power of 2 and get 0,04.
0,04x^{2}-1-\left(\frac{1}{25}x^{2}-\frac{2}{5}x+1\right)+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}x-1\right)^{2}.
0,04x^{2}-1-\frac{1}{25}x^{2}+\frac{2}{5}x-1+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
To find the opposite of \frac{1}{25}x^{2}-\frac{2}{5}x+1, find the opposite of each term.
-1+\frac{2}{5}x-1+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Combine 0,04x^{2} and -\frac{1}{25}x^{2} to get 0.
-2+\frac{2}{5}x+\left(x+1\right)^{3}-\left(x-1\right)^{3}-\frac{2}{5}x
Subtract 1 from -1 to get -2.
-2+\frac{2}{5}x+x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}-\frac{2}{5}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
-2+\frac{17}{5}x+x^{3}+3x^{2}+1-\left(x-1\right)^{3}-\frac{2}{5}x
Combine \frac{2}{5}x and 3x to get \frac{17}{5}x.
-1+\frac{17}{5}x+x^{3}+3x^{2}-\left(x-1\right)^{3}-\frac{2}{5}x
Add -2 and 1 to get -1.
-1+\frac{17}{5}x+x^{3}+3x^{2}-\left(x^{3}-3x^{2}+3x-1\right)-\frac{2}{5}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
-1+\frac{17}{5}x+x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1-\frac{2}{5}x
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
-1+\frac{17}{5}x+3x^{2}+3x^{2}-3x+1-\frac{2}{5}x
Combine x^{3} and -x^{3} to get 0.
-1+\frac{17}{5}x+6x^{2}-3x+1-\frac{2}{5}x
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
-1+\frac{2}{5}x+6x^{2}+1-\frac{2}{5}x
Combine \frac{17}{5}x and -3x to get \frac{2}{5}x.
\frac{2}{5}x+6x^{2}-\frac{2}{5}x
Add -1 and 1 to get 0.
6x^{2}
Combine \frac{2}{5}x and -\frac{2}{5}x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}