Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(0,2x\right)^{2}-\left(\sqrt{7}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
0,2^{2}x^{2}-\left(\sqrt{7}\right)^{2}
Expand \left(0,2x\right)^{2}.
0,04x^{2}-\left(\sqrt{7}\right)^{2}
Calculate 0,2 to the power of 2 and get 0,04.
0,04x^{2}-7
The square of \sqrt{7} is 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(0,2x\right)^{2}-\left(\sqrt{7}\right)^{2})
Consider \left(0,2x+\sqrt{7}\right)\left(0,2x-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(0,2^{2}x^{2}-\left(\sqrt{7}\right)^{2})
Expand \left(0,2x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(0,04x^{2}-\left(\sqrt{7}\right)^{2})
Calculate 0,2 to the power of 2 and get 0,04.
\frac{\mathrm{d}}{\mathrm{d}x}(0,04x^{2}-7)
The square of \sqrt{7} is 7.
2\times 0,04x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
0,08x^{2-1}
Multiply 2 times 0,04.
0,08x^{1}
Subtract 1 from 2.
0,08x
For any term t, t^{1}=t.