Solve for k
k=8+2\sqrt{10}i\approx 8+6.32455532i
k=-2\sqrt{10}i+8\approx 8-6.32455532i
Share
Copied to clipboard
-8\left(5-12\right)=\left(k-12\right)\left(4-k\right)
Subtract 8 from 0 to get -8.
-8\left(-7\right)=\left(k-12\right)\left(4-k\right)
Subtract 12 from 5 to get -7.
56=\left(k-12\right)\left(4-k\right)
Multiply -8 and -7 to get 56.
56=16k-k^{2}-48
Use the distributive property to multiply k-12 by 4-k and combine like terms.
16k-k^{2}-48=56
Swap sides so that all variable terms are on the left hand side.
16k-k^{2}-48-56=0
Subtract 56 from both sides.
16k-k^{2}-104=0
Subtract 56 from -48 to get -104.
-k^{2}+16k-104=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-104\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-16±\sqrt{256-4\left(-1\right)\left(-104\right)}}{2\left(-1\right)}
Square 16.
k=\frac{-16±\sqrt{256+4\left(-104\right)}}{2\left(-1\right)}
Multiply -4 times -1.
k=\frac{-16±\sqrt{256-416}}{2\left(-1\right)}
Multiply 4 times -104.
k=\frac{-16±\sqrt{-160}}{2\left(-1\right)}
Add 256 to -416.
k=\frac{-16±4\sqrt{10}i}{2\left(-1\right)}
Take the square root of -160.
k=\frac{-16±4\sqrt{10}i}{-2}
Multiply 2 times -1.
k=\frac{-16+4\sqrt{10}i}{-2}
Now solve the equation k=\frac{-16±4\sqrt{10}i}{-2} when ± is plus. Add -16 to 4i\sqrt{10}.
k=-2\sqrt{10}i+8
Divide -16+4i\sqrt{10} by -2.
k=\frac{-4\sqrt{10}i-16}{-2}
Now solve the equation k=\frac{-16±4\sqrt{10}i}{-2} when ± is minus. Subtract 4i\sqrt{10} from -16.
k=8+2\sqrt{10}i
Divide -16-4i\sqrt{10} by -2.
k=-2\sqrt{10}i+8 k=8+2\sqrt{10}i
The equation is now solved.
-8\left(5-12\right)=\left(k-12\right)\left(4-k\right)
Subtract 8 from 0 to get -8.
-8\left(-7\right)=\left(k-12\right)\left(4-k\right)
Subtract 12 from 5 to get -7.
56=\left(k-12\right)\left(4-k\right)
Multiply -8 and -7 to get 56.
56=16k-k^{2}-48
Use the distributive property to multiply k-12 by 4-k and combine like terms.
16k-k^{2}-48=56
Swap sides so that all variable terms are on the left hand side.
16k-k^{2}=56+48
Add 48 to both sides.
16k-k^{2}=104
Add 56 and 48 to get 104.
-k^{2}+16k=104
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-k^{2}+16k}{-1}=\frac{104}{-1}
Divide both sides by -1.
k^{2}+\frac{16}{-1}k=\frac{104}{-1}
Dividing by -1 undoes the multiplication by -1.
k^{2}-16k=\frac{104}{-1}
Divide 16 by -1.
k^{2}-16k=-104
Divide 104 by -1.
k^{2}-16k+\left(-8\right)^{2}=-104+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-16k+64=-104+64
Square -8.
k^{2}-16k+64=-40
Add -104 to 64.
\left(k-8\right)^{2}=-40
Factor k^{2}-16k+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-8\right)^{2}}=\sqrt{-40}
Take the square root of both sides of the equation.
k-8=2\sqrt{10}i k-8=-2\sqrt{10}i
Simplify.
k=8+2\sqrt{10}i k=-2\sqrt{10}i+8
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}