Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-y^{2}-2y+7-7y^{2}
Add 3 and 4 to get 7.
-8y^{2}-2y+7
Combine -y^{2} and -7y^{2} to get -8y^{2}.
factor(-y^{2}-2y+7-7y^{2})
Add 3 and 4 to get 7.
factor(-8y^{2}-2y+7)
Combine -y^{2} and -7y^{2} to get -8y^{2}.
-8y^{2}-2y+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)\times 7}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)\times 7}}{2\left(-8\right)}
Square -2.
y=\frac{-\left(-2\right)±\sqrt{4+32\times 7}}{2\left(-8\right)}
Multiply -4 times -8.
y=\frac{-\left(-2\right)±\sqrt{4+224}}{2\left(-8\right)}
Multiply 32 times 7.
y=\frac{-\left(-2\right)±\sqrt{228}}{2\left(-8\right)}
Add 4 to 224.
y=\frac{-\left(-2\right)±2\sqrt{57}}{2\left(-8\right)}
Take the square root of 228.
y=\frac{2±2\sqrt{57}}{2\left(-8\right)}
The opposite of -2 is 2.
y=\frac{2±2\sqrt{57}}{-16}
Multiply 2 times -8.
y=\frac{2\sqrt{57}+2}{-16}
Now solve the equation y=\frac{2±2\sqrt{57}}{-16} when ± is plus. Add 2 to 2\sqrt{57}.
y=\frac{-\sqrt{57}-1}{8}
Divide 2+2\sqrt{57} by -16.
y=\frac{2-2\sqrt{57}}{-16}
Now solve the equation y=\frac{2±2\sqrt{57}}{-16} when ± is minus. Subtract 2\sqrt{57} from 2.
y=\frac{\sqrt{57}-1}{8}
Divide 2-2\sqrt{57} by -16.
-8y^{2}-2y+7=-8\left(y-\frac{-\sqrt{57}-1}{8}\right)\left(y-\frac{\sqrt{57}-1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{57}}{8} for x_{1} and \frac{-1+\sqrt{57}}{8} for x_{2}.