Evaluate
2y^{3}x^{6}
Expand
2y^{3}x^{6}
Share
Copied to clipboard
\frac{\left(-x^{2}\right)^{4}y^{4}}{x^{2}y}-\left(\left(-x^{2}\right)y\right)^{3}
Expand \left(\left(-x^{2}\right)y\right)^{4}.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\left(\left(-x^{2}\right)y\right)^{3}
Cancel out y in both numerator and denominator.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Expand \left(\left(-x^{2}\right)y\right)^{3}.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\frac{\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \left(-x^{2}\right)^{3}y^{3} times \frac{x^{2}}{x^{2}}.
\frac{y^{3}\left(-x^{2}\right)^{4}-\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}}
Since \frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}} and \frac{\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{3}\left(-1\right)^{4}\left(x^{2}\right)^{4}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Expand \left(-x^{2}\right)^{4}.
\frac{y^{3}\left(-1\right)^{4}x^{8}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{y^{3}\times 1x^{8}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Calculate -1 to the power of 4 and get 1.
y^{3}x^{6}-\left(-x^{2}\right)^{3}y^{3}
Cancel out x^{2} in both numerator and denominator.
y^{3}x^{6}-\left(-1\right)^{3}\left(x^{2}\right)^{3}y^{3}
Expand \left(-x^{2}\right)^{3}.
y^{3}x^{6}-\left(-1\right)^{3}x^{6}y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
y^{3}x^{6}-\left(-x^{6}y^{3}\right)
Calculate -1 to the power of 3 and get -1.
y^{3}x^{6}+x^{6}y^{3}
Multiply -1 and -1 to get 1.
2y^{3}x^{6}
Combine y^{3}x^{6} and x^{6}y^{3} to get 2y^{3}x^{6}.
\frac{\left(-x^{2}\right)^{4}y^{4}}{x^{2}y}-\left(\left(-x^{2}\right)y\right)^{3}
Expand \left(\left(-x^{2}\right)y\right)^{4}.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\left(\left(-x^{2}\right)y\right)^{3}
Cancel out y in both numerator and denominator.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Expand \left(\left(-x^{2}\right)y\right)^{3}.
\frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}}-\frac{\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \left(-x^{2}\right)^{3}y^{3} times \frac{x^{2}}{x^{2}}.
\frac{y^{3}\left(-x^{2}\right)^{4}-\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}}
Since \frac{y^{3}\left(-x^{2}\right)^{4}}{x^{2}} and \frac{\left(-x^{2}\right)^{3}y^{3}x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{3}\left(-1\right)^{4}\left(x^{2}\right)^{4}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Expand \left(-x^{2}\right)^{4}.
\frac{y^{3}\left(-1\right)^{4}x^{8}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{y^{3}\times 1x^{8}}{x^{2}}-\left(-x^{2}\right)^{3}y^{3}
Calculate -1 to the power of 4 and get 1.
y^{3}x^{6}-\left(-x^{2}\right)^{3}y^{3}
Cancel out x^{2} in both numerator and denominator.
y^{3}x^{6}-\left(-1\right)^{3}\left(x^{2}\right)^{3}y^{3}
Expand \left(-x^{2}\right)^{3}.
y^{3}x^{6}-\left(-1\right)^{3}x^{6}y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
y^{3}x^{6}-\left(-x^{6}y^{3}\right)
Calculate -1 to the power of 3 and get -1.
y^{3}x^{6}+x^{6}y^{3}
Multiply -1 and -1 to get 1.
2y^{3}x^{6}
Combine y^{3}x^{6} and x^{6}y^{3} to get 2y^{3}x^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}