Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x^{2}-1+3+x^{2}-x+3
Combine -x and x to get 0.
-x^{2}-2x^{2}+2+x^{2}-x+3
Add -1 and 3 to get 2.
-x^{2}-x^{2}+2-x+3
Combine -2x^{2} and x^{2} to get -x^{2}.
-x^{2}-x^{2}+5-x
Add 2 and 3 to get 5.
-2x^{2}+5-x
Combine -x^{2} and -x^{2} to get -2x^{2}.
factor(-x^{2}-2x^{2}-1+3+x^{2}-x+3)
Combine -x and x to get 0.
factor(-x^{2}-2x^{2}+2+x^{2}-x+3)
Add -1 and 3 to get 2.
factor(-x^{2}-x^{2}+2-x+3)
Combine -2x^{2} and x^{2} to get -x^{2}.
factor(-x^{2}-x^{2}+5-x)
Add 2 and 3 to get 5.
factor(-2x^{2}+5-x)
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}-x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 5}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 5}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\left(-2\right)}
Multiply 8 times 5.
x=\frac{-\left(-1\right)±\sqrt{41}}{2\left(-2\right)}
Add 1 to 40.
x=\frac{1±\sqrt{41}}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{41}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{41}+1}{-4}
Now solve the equation x=\frac{1±\sqrt{41}}{-4} when ± is plus. Add 1 to \sqrt{41}.
x=\frac{-\sqrt{41}-1}{4}
Divide 1+\sqrt{41} by -4.
x=\frac{1-\sqrt{41}}{-4}
Now solve the equation x=\frac{1±\sqrt{41}}{-4} when ± is minus. Subtract \sqrt{41} from 1.
x=\frac{\sqrt{41}-1}{4}
Divide 1-\sqrt{41} by -4.
-2x^{2}-x+5=-2\left(x-\frac{-\sqrt{41}-1}{4}\right)\left(x-\frac{\sqrt{41}-1}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{41}}{4} for x_{1} and \frac{-1+\sqrt{41}}{4} for x_{2}.