Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x+1-2\times 4x=3x\left(-5\right)-4x^{2}\times 3
Multiply x and x to get x^{2}.
-x+1-2\times 4x=-15x-4x^{2}\times 3
Multiply 3 and -5 to get -15.
-x+1-2\times 4x=-15x-12x^{2}
Multiply 4 and 3 to get 12.
-x+1-2\times 4x+15x=-12x^{2}
Add 15x to both sides.
-x+1-2\times 4x+15x+12x^{2}=0
Add 12x^{2} to both sides.
14x+1-2\times 4x+12x^{2}=0
Combine -x and 15x to get 14x.
\left(14-2\times 4\right)x+1+12x^{2}=0
Combine all terms containing x.
12x^{2}+6x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 12}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 12}}{2\times 12}
Square 6.
x=\frac{-6±\sqrt{36-48}}{2\times 12}
Multiply -4 times 12.
x=\frac{-6±\sqrt{-12}}{2\times 12}
Add 36 to -48.
x=\frac{-6±2\sqrt{3}i}{2\times 12}
Take the square root of -12.
x=\frac{-6±2\sqrt{3}i}{24}
Multiply 2 times 12.
x=\frac{-6+2\sqrt{3}i}{24}
Now solve the equation x=\frac{-6±2\sqrt{3}i}{24} when ± is plus. Add -6 to 2i\sqrt{3}.
x=\frac{\sqrt{3}i}{12}-\frac{1}{4}
Divide -6+2i\sqrt{3} by 24.
x=\frac{-2\sqrt{3}i-6}{24}
Now solve the equation x=\frac{-6±2\sqrt{3}i}{24} when ± is minus. Subtract 2i\sqrt{3} from -6.
x=-\frac{\sqrt{3}i}{12}-\frac{1}{4}
Divide -6-2i\sqrt{3} by 24.
x=\frac{\sqrt{3}i}{12}-\frac{1}{4} x=-\frac{\sqrt{3}i}{12}-\frac{1}{4}
The equation is now solved.
-x+1-2\times 4x=3x\left(-5\right)-4x^{2}\times 3
Multiply x and x to get x^{2}.
-x+1-2\times 4x=-15x-4x^{2}\times 3
Multiply 3 and -5 to get -15.
-x+1-2\times 4x=-15x-12x^{2}
Multiply 4 and 3 to get 12.
-x+1-2\times 4x+15x=-12x^{2}
Add 15x to both sides.
-x+1-2\times 4x+15x+12x^{2}=0
Add 12x^{2} to both sides.
14x+1-2\times 4x+12x^{2}=0
Combine -x and 15x to get 14x.
14x-2\times 4x+12x^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(14-2\times 4\right)x+12x^{2}=-1
Combine all terms containing x.
12x^{2}+6x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}+6x}{12}=-\frac{1}{12}
Divide both sides by 12.
x^{2}+\frac{6}{12}x=-\frac{1}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{2}x=-\frac{1}{12}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{1}{12}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{1}{12}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{1}{48}
Add -\frac{1}{12} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{1}{48}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{1}{48}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{3}i}{12} x+\frac{1}{4}=-\frac{\sqrt{3}i}{12}
Simplify.
x=\frac{\sqrt{3}i}{12}-\frac{1}{4} x=-\frac{\sqrt{3}i}{12}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.