Evaluate
v^{2}+10v+1
Factor
\left(v-\left(-2\sqrt{6}-5\right)\right)\left(v-\left(2\sqrt{6}-5\right)\right)
Share
Copied to clipboard
-v^{2}+10v-4+2v^{2}+5
Combine 3v and 7v to get 10v.
-v^{2}+10v+1+2v^{2}
Add -4 and 5 to get 1.
v^{2}+10v+1
Combine -v^{2} and 2v^{2} to get v^{2}.
factor(-v^{2}+10v-4+2v^{2}+5)
Combine 3v and 7v to get 10v.
factor(-v^{2}+10v+1+2v^{2})
Add -4 and 5 to get 1.
factor(v^{2}+10v+1)
Combine -v^{2} and 2v^{2} to get v^{2}.
v^{2}+10v+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-10±\sqrt{10^{2}-4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-10±\sqrt{100-4}}{2}
Square 10.
v=\frac{-10±\sqrt{96}}{2}
Add 100 to -4.
v=\frac{-10±4\sqrt{6}}{2}
Take the square root of 96.
v=\frac{4\sqrt{6}-10}{2}
Now solve the equation v=\frac{-10±4\sqrt{6}}{2} when ± is plus. Add -10 to 4\sqrt{6}.
v=2\sqrt{6}-5
Divide -10+4\sqrt{6} by 2.
v=\frac{-4\sqrt{6}-10}{2}
Now solve the equation v=\frac{-10±4\sqrt{6}}{2} when ± is minus. Subtract 4\sqrt{6} from -10.
v=-2\sqrt{6}-5
Divide -10-4\sqrt{6} by 2.
v^{2}+10v+1=\left(v-\left(2\sqrt{6}-5\right)\right)\left(v-\left(-2\sqrt{6}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+2\sqrt{6} for x_{1} and -5-2\sqrt{6} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}