Evaluate
\left(1-q\right)\left(12q^{2}-5q+7\right)
Expand
7-12q+17q^{2}-12q^{3}
Share
Copied to clipboard
12\left(-q\right)q^{2}-5\left(-q\right)q+7\left(-q\right)+12q^{2}-5q+7
Use the distributive property to multiply -q+1 by 12q^{2}-5q+7.
12\left(-q\right)q^{2}+5qq+7\left(-q\right)+12q^{2}-5q+7
Multiply -5 and -1 to get 5.
12\left(-q\right)q^{2}+5q^{2}+7\left(-q\right)+12q^{2}-5q+7
Multiply q and q to get q^{2}.
12\left(-q\right)q^{2}+17q^{2}+7\left(-q\right)-5q+7
Combine 5q^{2} and 12q^{2} to get 17q^{2}.
-12qq^{2}+17q^{2}+7\left(-1\right)q-5q+7
Multiply 12 and -1 to get -12.
-12q^{3}+17q^{2}+7\left(-1\right)q-5q+7
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-12q^{3}+17q^{2}-7q-5q+7
Multiply 7 and -1 to get -7.
-12q^{3}+17q^{2}-12q+7
Combine -7q and -5q to get -12q.
12\left(-q\right)q^{2}-5\left(-q\right)q+7\left(-q\right)+12q^{2}-5q+7
Use the distributive property to multiply -q+1 by 12q^{2}-5q+7.
12\left(-q\right)q^{2}+5qq+7\left(-q\right)+12q^{2}-5q+7
Multiply -5 and -1 to get 5.
12\left(-q\right)q^{2}+5q^{2}+7\left(-q\right)+12q^{2}-5q+7
Multiply q and q to get q^{2}.
12\left(-q\right)q^{2}+17q^{2}+7\left(-q\right)-5q+7
Combine 5q^{2} and 12q^{2} to get 17q^{2}.
-12qq^{2}+17q^{2}+7\left(-1\right)q-5q+7
Multiply 12 and -1 to get -12.
-12q^{3}+17q^{2}+7\left(-1\right)q-5q+7
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-12q^{3}+17q^{2}-7q-5q+7
Multiply 7 and -1 to get -7.
-12q^{3}+17q^{2}-12q+7
Combine -7q and -5q to get -12q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}