( - m + 2 n ) ( - 2 n - m ) - 2 ( m - 1
Evaluate
m^{2}-2m-4n^{2}+2
Expand
m^{2}-2m-4n^{2}+2
Share
Copied to clipboard
-2\left(-m\right)n-\left(-m\right)m-4n^{2}-2nm-2\left(m-1\right)
Apply the distributive property by multiplying each term of -m+2n by each term of -2n-m.
2mn-\left(-m\right)m-4n^{2}-2nm-2\left(m-1\right)
Multiply -2 and -1 to get 2.
2mn+mm-4n^{2}-2nm-2\left(m-1\right)
Multiply -1 and -1 to get 1.
2mn+m^{2}-4n^{2}-2nm-2\left(m-1\right)
Multiply m and m to get m^{2}.
m^{2}-4n^{2}-2\left(m-1\right)
Combine 2mn and -2nm to get 0.
m^{2}-4n^{2}-2m+2
Use the distributive property to multiply -2 by m-1.
-2\left(-m\right)n-\left(-m\right)m-4n^{2}-2nm-2\left(m-1\right)
Apply the distributive property by multiplying each term of -m+2n by each term of -2n-m.
2mn-\left(-m\right)m-4n^{2}-2nm-2\left(m-1\right)
Multiply -2 and -1 to get 2.
2mn+mm-4n^{2}-2nm-2\left(m-1\right)
Multiply -1 and -1 to get 1.
2mn+m^{2}-4n^{2}-2nm-2\left(m-1\right)
Multiply m and m to get m^{2}.
m^{2}-4n^{2}-2\left(m-1\right)
Combine 2mn and -2nm to get 0.
m^{2}-4n^{2}-2m+2
Use the distributive property to multiply -2 by m-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}