Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{b\left(-a^{2}+2a-b\right)}{b}+\left(a+b\right)\left(a-b\right)
Factor the expressions that are not already factored in \frac{\left(-a^{2}\right)b+2ab-b^{2}}{b}.
-a^{2}+2a-b+\left(a+b\right)\left(a-b\right)
Cancel out b in both numerator and denominator.
-a^{2}+2a-b+a^{2}-b^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2a-b-b^{2}
Combine -a^{2} and a^{2} to get 0.
\frac{b\left(-a^{2}+2a-b\right)}{b}+\left(a+b\right)\left(a-b\right)
Factor the expressions that are not already factored in \frac{\left(-a^{2}\right)b+2ab-b^{2}}{b}.
-a^{2}+2a-b+\left(a+b\right)\left(a-b\right)
Cancel out b in both numerator and denominator.
-a^{2}+2a-b+a^{2}-b^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2a-b-b^{2}
Combine -a^{2} and a^{2} to get 0.