Evaluate
-4a^{3}
Expand
-4a^{3}
Quiz
Polynomial
5 problems similar to:
( - a ^ { 2 } ) ^ { 4 } \cdot ( 2 a ) ^ { 2 } \div ( - a ) ^ { 7 }
Share
Copied to clipboard
\frac{\left(-a^{2}\right)^{4}\times 2^{2}a^{2}}{\left(-a\right)^{7}}
Expand \left(2a\right)^{2}.
\frac{\left(-a^{2}\right)^{4}\times 4a^{2}}{\left(-a\right)^{7}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-1\right)^{4}\left(a^{2}\right)^{4}\times 4a^{2}}{\left(-a\right)^{7}}
Expand \left(-a^{2}\right)^{4}.
\frac{\left(-1\right)^{4}a^{8}\times 4a^{2}}{\left(-a\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{1a^{8}\times 4a^{2}}{\left(-a\right)^{7}}
Calculate -1 to the power of 4 and get 1.
\frac{4a^{8}a^{2}}{\left(-a\right)^{7}}
Multiply 1 and 4 to get 4.
\frac{4a^{10}}{\left(-a\right)^{7}}
To multiply powers of the same base, add their exponents. Add 8 and 2 to get 10.
\frac{4a^{10}}{\left(-1\right)^{7}a^{7}}
Expand \left(-a\right)^{7}.
\frac{4a^{10}}{-a^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{4a^{3}}{-1}
Cancel out a^{7} in both numerator and denominator.
-4a^{3}
Anything divided by -1 gives its opposite.
\frac{\left(-a^{2}\right)^{4}\times 2^{2}a^{2}}{\left(-a\right)^{7}}
Expand \left(2a\right)^{2}.
\frac{\left(-a^{2}\right)^{4}\times 4a^{2}}{\left(-a\right)^{7}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-1\right)^{4}\left(a^{2}\right)^{4}\times 4a^{2}}{\left(-a\right)^{7}}
Expand \left(-a^{2}\right)^{4}.
\frac{\left(-1\right)^{4}a^{8}\times 4a^{2}}{\left(-a\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{1a^{8}\times 4a^{2}}{\left(-a\right)^{7}}
Calculate -1 to the power of 4 and get 1.
\frac{4a^{8}a^{2}}{\left(-a\right)^{7}}
Multiply 1 and 4 to get 4.
\frac{4a^{10}}{\left(-a\right)^{7}}
To multiply powers of the same base, add their exponents. Add 8 and 2 to get 10.
\frac{4a^{10}}{\left(-1\right)^{7}a^{7}}
Expand \left(-a\right)^{7}.
\frac{4a^{10}}{-a^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{4a^{3}}{-1}
Cancel out a^{7} in both numerator and denominator.
-4a^{3}
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}