Solve for a (complex solution)
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-a\right)x+bx=a-b
Use the distributive property to multiply -a+b by x.
\left(-a\right)x+bx-a=-b
Subtract a from both sides.
\left(-a\right)x-a=-b-bx
Subtract bx from both sides.
-ax-a=-bx-b
Reorder the terms.
\left(-x-1\right)a=-bx-b
Combine all terms containing a.
\frac{\left(-x-1\right)a}{-x-1}=-\frac{b\left(x+1\right)}{-x-1}
Divide both sides by -1-x.
a=-\frac{b\left(x+1\right)}{-x-1}
Dividing by -1-x undoes the multiplication by -1-x.
a=b
Divide -b\left(1+x\right) by -1-x.
\left(-a\right)x+bx=a-b
Use the distributive property to multiply -a+b by x.
\left(-a\right)x+bx+b=a
Add b to both sides.
bx+b=a-\left(-a\right)x
Subtract \left(-a\right)x from both sides.
bx+b=a+ax
Multiply -1 and -1 to get 1.
\left(x+1\right)b=a+ax
Combine all terms containing b.
\left(x+1\right)b=ax+a
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{ax+a}{x+1}
Divide both sides by x+1.
b=\frac{ax+a}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
b=a
Divide a+ax by x+1.
\left(-a\right)x+bx=a-b
Use the distributive property to multiply -a+b by x.
\left(-a\right)x+bx-a=-b
Subtract a from both sides.
\left(-a\right)x-a=-b-bx
Subtract bx from both sides.
-ax-a=-bx-b
Reorder the terms.
\left(-x-1\right)a=-bx-b
Combine all terms containing a.
\frac{\left(-x-1\right)a}{-x-1}=-\frac{b\left(x+1\right)}{-x-1}
Divide both sides by -1-x.
a=-\frac{b\left(x+1\right)}{-x-1}
Dividing by -1-x undoes the multiplication by -1-x.
a=b
Divide -b\left(1+x\right) by -1-x.
\left(-a\right)x+bx=a-b
Use the distributive property to multiply -a+b by x.
\left(-a\right)x+bx+b=a
Add b to both sides.
bx+b=a-\left(-a\right)x
Subtract \left(-a\right)x from both sides.
bx+b=a+ax
Multiply -1 and -1 to get 1.
\left(x+1\right)b=a+ax
Combine all terms containing b.
\left(x+1\right)b=ax+a
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{ax+a}{x+1}
Divide both sides by x+1.
b=\frac{ax+a}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
b=a
Divide a+ax by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}