Evaluate
\frac{1976}{55}\approx 35.927272727
Factor
\frac{13 \cdot 19 \cdot 2 ^ {3}}{5 \cdot 11} = 35\frac{51}{55} = 35.92727272727273
Share
Copied to clipboard
-9.6\left(\frac{75}{99}-4.5\right)
Expand \frac{7.5}{9.9} by multiplying both numerator and the denominator by 10.
-9.6\left(\frac{25}{33}-4.5\right)
Reduce the fraction \frac{75}{99} to lowest terms by extracting and canceling out 3.
-9.6\left(\frac{25}{33}-\frac{9}{2}\right)
Convert decimal number 4.5 to fraction \frac{45}{10}. Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
-9.6\left(\frac{50}{66}-\frac{297}{66}\right)
Least common multiple of 33 and 2 is 66. Convert \frac{25}{33} and \frac{9}{2} to fractions with denominator 66.
-9.6\times \frac{50-297}{66}
Since \frac{50}{66} and \frac{297}{66} have the same denominator, subtract them by subtracting their numerators.
-9.6\left(-\frac{247}{66}\right)
Subtract 297 from 50 to get -247.
-\frac{48}{5}\left(-\frac{247}{66}\right)
Convert decimal number -9.6 to fraction -\frac{96}{10}. Reduce the fraction -\frac{96}{10} to lowest terms by extracting and canceling out 2.
\frac{-48\left(-247\right)}{5\times 66}
Multiply -\frac{48}{5} times -\frac{247}{66} by multiplying numerator times numerator and denominator times denominator.
\frac{11856}{330}
Do the multiplications in the fraction \frac{-48\left(-247\right)}{5\times 66}.
\frac{1976}{55}
Reduce the fraction \frac{11856}{330} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}