Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-9f^{2}+2f+6+4
Combine 9f and -7f to get 2f.
-9f^{2}+2f+10
Add 6 and 4 to get 10.
factor(-9f^{2}+2f+6+4)
Combine 9f and -7f to get 2f.
factor(-9f^{2}+2f+10)
Add 6 and 4 to get 10.
-9f^{2}+2f+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
f=\frac{-2±\sqrt{2^{2}-4\left(-9\right)\times 10}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-2±\sqrt{4-4\left(-9\right)\times 10}}{2\left(-9\right)}
Square 2.
f=\frac{-2±\sqrt{4+36\times 10}}{2\left(-9\right)}
Multiply -4 times -9.
f=\frac{-2±\sqrt{4+360}}{2\left(-9\right)}
Multiply 36 times 10.
f=\frac{-2±\sqrt{364}}{2\left(-9\right)}
Add 4 to 360.
f=\frac{-2±2\sqrt{91}}{2\left(-9\right)}
Take the square root of 364.
f=\frac{-2±2\sqrt{91}}{-18}
Multiply 2 times -9.
f=\frac{2\sqrt{91}-2}{-18}
Now solve the equation f=\frac{-2±2\sqrt{91}}{-18} when ± is plus. Add -2 to 2\sqrt{91}.
f=\frac{1-\sqrt{91}}{9}
Divide -2+2\sqrt{91} by -18.
f=\frac{-2\sqrt{91}-2}{-18}
Now solve the equation f=\frac{-2±2\sqrt{91}}{-18} when ± is minus. Subtract 2\sqrt{91} from -2.
f=\frac{\sqrt{91}+1}{9}
Divide -2-2\sqrt{91} by -18.
-9f^{2}+2f+10=-9\left(f-\frac{1-\sqrt{91}}{9}\right)\left(f-\frac{\sqrt{91}+1}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{91}}{9} for x_{1} and \frac{1+\sqrt{91}}{9} for x_{2}.