Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-9c^{2}-2c+7+9
Combine -5c and 3c to get -2c.
-9c^{2}-2c+16
Add 7 and 9 to get 16.
factor(-9c^{2}-2c+7+9)
Combine -5c and 3c to get -2c.
factor(-9c^{2}-2c+16)
Add 7 and 9 to get 16.
-9c^{2}-2c+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)\times 16}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)\times 16}}{2\left(-9\right)}
Square -2.
c=\frac{-\left(-2\right)±\sqrt{4+36\times 16}}{2\left(-9\right)}
Multiply -4 times -9.
c=\frac{-\left(-2\right)±\sqrt{4+576}}{2\left(-9\right)}
Multiply 36 times 16.
c=\frac{-\left(-2\right)±\sqrt{580}}{2\left(-9\right)}
Add 4 to 576.
c=\frac{-\left(-2\right)±2\sqrt{145}}{2\left(-9\right)}
Take the square root of 580.
c=\frac{2±2\sqrt{145}}{2\left(-9\right)}
The opposite of -2 is 2.
c=\frac{2±2\sqrt{145}}{-18}
Multiply 2 times -9.
c=\frac{2\sqrt{145}+2}{-18}
Now solve the equation c=\frac{2±2\sqrt{145}}{-18} when ± is plus. Add 2 to 2\sqrt{145}.
c=\frac{-\sqrt{145}-1}{9}
Divide 2+2\sqrt{145} by -18.
c=\frac{2-2\sqrt{145}}{-18}
Now solve the equation c=\frac{2±2\sqrt{145}}{-18} when ± is minus. Subtract 2\sqrt{145} from 2.
c=\frac{\sqrt{145}-1}{9}
Divide 2-2\sqrt{145} by -18.
-9c^{2}-2c+16=-9\left(c-\frac{-\sqrt{145}-1}{9}\right)\left(c-\frac{\sqrt{145}-1}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{145}}{9} for x_{1} and \frac{-1+\sqrt{145}}{9} for x_{2}.