Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-8\right)^{-\frac{1}{3}}\left(x^{-\frac{1}{2}}\right)^{-\frac{1}{3}}
Expand \left(-8x^{-\frac{1}{2}}\right)^{-\frac{1}{3}}.
\left(-8\right)^{-\frac{1}{3}}x^{\frac{1}{6}}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{2} and -\frac{1}{3} to get \frac{1}{6}.
-\frac{1}{2}x^{\frac{1}{6}}
Calculate -8 to the power of -\frac{1}{3} and get -\frac{1}{2}.
-\frac{1}{3}\left(-8x^{-\frac{1}{2}}\right)^{-\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(-8x^{-\frac{1}{2}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{3}\left(-8x^{-\frac{1}{2}}\right)^{-\frac{4}{3}}\left(-\frac{1}{2}\right)\left(-8\right)x^{-\frac{1}{2}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{4}{3}x^{-\frac{3}{2}}\left(-8x^{-\frac{1}{2}}\right)^{-\frac{4}{3}}
Simplify.