Evaluate
\frac{117}{2}=58.5
Factor
\frac{3 ^ {2} \cdot 13}{2} = 58\frac{1}{2} = 58.5
Share
Copied to clipboard
-\frac{24+1}{3}-12-\left(-\frac{70\times 2+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Multiply 8 and 3 to get 24.
-\frac{25}{3}-12-\left(-\frac{70\times 2+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Add 24 and 1 to get 25.
-\frac{25}{3}-\frac{36}{3}-\left(-\frac{70\times 2+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Convert 12 to fraction \frac{36}{3}.
\frac{-25-36}{3}-\left(-\frac{70\times 2+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Since -\frac{25}{3} and \frac{36}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{61}{3}-\left(-\frac{70\times 2+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Subtract 36 from -25 to get -61.
-\frac{61}{3}-\left(-\frac{140+1}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Multiply 70 and 2 to get 140.
-\frac{61}{3}-\left(-\frac{141}{2}\right)-\left(-\frac{8\times 3+1}{3}\right)
Add 140 and 1 to get 141.
-\frac{61}{3}+\frac{141}{2}-\left(-\frac{8\times 3+1}{3}\right)
The opposite of -\frac{141}{2} is \frac{141}{2}.
-\frac{122}{6}+\frac{423}{6}-\left(-\frac{8\times 3+1}{3}\right)
Least common multiple of 3 and 2 is 6. Convert -\frac{61}{3} and \frac{141}{2} to fractions with denominator 6.
\frac{-122+423}{6}-\left(-\frac{8\times 3+1}{3}\right)
Since -\frac{122}{6} and \frac{423}{6} have the same denominator, add them by adding their numerators.
\frac{301}{6}-\left(-\frac{8\times 3+1}{3}\right)
Add -122 and 423 to get 301.
\frac{301}{6}-\left(-\frac{24+1}{3}\right)
Multiply 8 and 3 to get 24.
\frac{301}{6}-\left(-\frac{25}{3}\right)
Add 24 and 1 to get 25.
\frac{301}{6}+\frac{25}{3}
The opposite of -\frac{25}{3} is \frac{25}{3}.
\frac{301}{6}+\frac{50}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{301}{6} and \frac{25}{3} to fractions with denominator 6.
\frac{301+50}{6}
Since \frac{301}{6} and \frac{50}{6} have the same denominator, add them by adding their numerators.
\frac{351}{6}
Add 301 and 50 to get 351.
\frac{117}{2}
Reduce the fraction \frac{351}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}