Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

490000+58800k+1764k^{2}-4\times 490\left(300+k^{2}+20k\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-700-42k\right)^{2}.
490000+58800k+1764k^{2}-1960\left(300+k^{2}+20k\right)=0
Multiply 4 and 490 to get 1960.
490000+58800k+1764k^{2}-588000-1960k^{2}-39200k=0
Use the distributive property to multiply -1960 by 300+k^{2}+20k.
-98000+58800k+1764k^{2}-1960k^{2}-39200k=0
Subtract 588000 from 490000 to get -98000.
-98000+58800k-196k^{2}-39200k=0
Combine 1764k^{2} and -1960k^{2} to get -196k^{2}.
-98000+19600k-196k^{2}=0
Combine 58800k and -39200k to get 19600k.
-196k^{2}+19600k-98000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-19600±\sqrt{19600^{2}-4\left(-196\right)\left(-98000\right)}}{2\left(-196\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -196 for a, 19600 for b, and -98000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-19600±\sqrt{384160000-4\left(-196\right)\left(-98000\right)}}{2\left(-196\right)}
Square 19600.
k=\frac{-19600±\sqrt{384160000+784\left(-98000\right)}}{2\left(-196\right)}
Multiply -4 times -196.
k=\frac{-19600±\sqrt{384160000-76832000}}{2\left(-196\right)}
Multiply 784 times -98000.
k=\frac{-19600±\sqrt{307328000}}{2\left(-196\right)}
Add 384160000 to -76832000.
k=\frac{-19600±7840\sqrt{5}}{2\left(-196\right)}
Take the square root of 307328000.
k=\frac{-19600±7840\sqrt{5}}{-392}
Multiply 2 times -196.
k=\frac{7840\sqrt{5}-19600}{-392}
Now solve the equation k=\frac{-19600±7840\sqrt{5}}{-392} when ± is plus. Add -19600 to 7840\sqrt{5}.
k=50-20\sqrt{5}
Divide -19600+7840\sqrt{5} by -392.
k=\frac{-7840\sqrt{5}-19600}{-392}
Now solve the equation k=\frac{-19600±7840\sqrt{5}}{-392} when ± is minus. Subtract 7840\sqrt{5} from -19600.
k=20\sqrt{5}+50
Divide -19600-7840\sqrt{5} by -392.
k=50-20\sqrt{5} k=20\sqrt{5}+50
The equation is now solved.
490000+58800k+1764k^{2}-4\times 490\left(300+k^{2}+20k\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-700-42k\right)^{2}.
490000+58800k+1764k^{2}-1960\left(300+k^{2}+20k\right)=0
Multiply 4 and 490 to get 1960.
490000+58800k+1764k^{2}-588000-1960k^{2}-39200k=0
Use the distributive property to multiply -1960 by 300+k^{2}+20k.
-98000+58800k+1764k^{2}-1960k^{2}-39200k=0
Subtract 588000 from 490000 to get -98000.
-98000+58800k-196k^{2}-39200k=0
Combine 1764k^{2} and -1960k^{2} to get -196k^{2}.
-98000+19600k-196k^{2}=0
Combine 58800k and -39200k to get 19600k.
19600k-196k^{2}=98000
Add 98000 to both sides. Anything plus zero gives itself.
-196k^{2}+19600k=98000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-196k^{2}+19600k}{-196}=\frac{98000}{-196}
Divide both sides by -196.
k^{2}+\frac{19600}{-196}k=\frac{98000}{-196}
Dividing by -196 undoes the multiplication by -196.
k^{2}-100k=\frac{98000}{-196}
Divide 19600 by -196.
k^{2}-100k=-500
Divide 98000 by -196.
k^{2}-100k+\left(-50\right)^{2}=-500+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-100k+2500=-500+2500
Square -50.
k^{2}-100k+2500=2000
Add -500 to 2500.
\left(k-50\right)^{2}=2000
Factor k^{2}-100k+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-50\right)^{2}}=\sqrt{2000}
Take the square root of both sides of the equation.
k-50=20\sqrt{5} k-50=-20\sqrt{5}
Simplify.
k=20\sqrt{5}+50 k=50-20\sqrt{5}
Add 50 to both sides of the equation.