Evaluate
5z^{2}+6z-7
Expand
5z^{2}+6z-7
Share
Copied to clipboard
-7z^{2}-5z-32-9z^{2}+10z+9+21z^{2}+z+16
To find the opposite of 9z^{2}-10z-9, find the opposite of each term.
-16z^{2}-5z-32+10z+9+21z^{2}+z+16
Combine -7z^{2} and -9z^{2} to get -16z^{2}.
-16z^{2}+5z-32+9+21z^{2}+z+16
Combine -5z and 10z to get 5z.
-16z^{2}+5z-23+21z^{2}+z+16
Add -32 and 9 to get -23.
5z^{2}+5z-23+z+16
Combine -16z^{2} and 21z^{2} to get 5z^{2}.
5z^{2}+6z-23+16
Combine 5z and z to get 6z.
5z^{2}+6z-7
Add -23 and 16 to get -7.
-7z^{2}-5z-32-9z^{2}+10z+9+21z^{2}+z+16
To find the opposite of 9z^{2}-10z-9, find the opposite of each term.
-16z^{2}-5z-32+10z+9+21z^{2}+z+16
Combine -7z^{2} and -9z^{2} to get -16z^{2}.
-16z^{2}+5z-32+9+21z^{2}+z+16
Combine -5z and 10z to get 5z.
-16z^{2}+5z-23+21z^{2}+z+16
Add -32 and 9 to get -23.
5z^{2}+5z-23+z+16
Combine -16z^{2} and 21z^{2} to get 5z^{2}.
5z^{2}+6z-23+16
Combine 5z and z to get 6z.
5z^{2}+6z-7
Add -23 and 16 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}