Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-2x+3-9x
Combine -7x^{2} and 4x^{2} to get -3x^{2}.
-3x^{2}-11x+3
Combine -2x and -9x to get -11x.
factor(-3x^{2}-2x+3-9x)
Combine -7x^{2} and 4x^{2} to get -3x^{2}.
factor(-3x^{2}-11x+3)
Combine -2x and -9x to get -11x.
-3x^{2}-11x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-11\right)±\sqrt{121+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\left(-11\right)±\sqrt{157}}{2\left(-3\right)}
Add 121 to 36.
x=\frac{11±\sqrt{157}}{2\left(-3\right)}
The opposite of -11 is 11.
x=\frac{11±\sqrt{157}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{157}+11}{-6}
Now solve the equation x=\frac{11±\sqrt{157}}{-6} when ± is plus. Add 11 to \sqrt{157}.
x=\frac{-\sqrt{157}-11}{6}
Divide 11+\sqrt{157} by -6.
x=\frac{11-\sqrt{157}}{-6}
Now solve the equation x=\frac{11±\sqrt{157}}{-6} when ± is minus. Subtract \sqrt{157} from 11.
x=\frac{\sqrt{157}-11}{6}
Divide 11-\sqrt{157} by -6.
-3x^{2}-11x+3=-3\left(x-\frac{-\sqrt{157}-11}{6}\right)\left(x-\frac{\sqrt{157}-11}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11-\sqrt{157}}{6} for x_{1} and \frac{-11+\sqrt{157}}{6} for x_{2}.