Evaluate
45.25
Factor
\frac{181}{2 ^ {2}} = 45\frac{1}{4} = 45.25
Share
Copied to clipboard
-7\left(\frac{4}{3}-\frac{3}{4}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Calculate 2 to the power of 2 and get 4.
-7\left(\frac{16}{12}-\frac{9}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Least common multiple of 3 and 4 is 12. Convert \frac{4}{3} and \frac{3}{4} to fractions with denominator 12.
-7\left(\frac{16-9}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Since \frac{16}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
-7\left(\frac{7}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Subtract 9 from 16 to get 7.
-7\left(\frac{7}{12}+\frac{6}{12}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Least common multiple of 12 and 2 is 12. Convert \frac{7}{12} and \frac{1}{2} to fractions with denominator 12.
-7\times \frac{7+6}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Since \frac{7}{12} and \frac{6}{12} have the same denominator, add them by adding their numerators.
-7\times \frac{13}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Add 7 and 6 to get 13.
\frac{-7\times 13}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Express -7\times \frac{13}{12} as a single fraction.
\frac{-91}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Multiply -7 and 13 to get -91.
-\frac{91}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Fraction \frac{-91}{12} can be rewritten as -\frac{91}{12} by extracting the negative sign.
\frac{-91\left(-6\right)}{12}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Express -\frac{91}{12}\left(-6\right) as a single fraction.
\frac{546}{12}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Multiply -91 and -6 to get 546.
\frac{91}{2}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Reduce the fraction \frac{546}{12} to lowest terms by extracting and canceling out 6.
\frac{91}{2}-\frac{0.25^{2}}{-\frac{1}{4}\left(-1\right)}
Express \frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1} as a single fraction.
\frac{91}{2}-\frac{0.0625}{-\frac{1}{4}\left(-1\right)}
Calculate 0.25 to the power of 2 and get 0.0625.
\frac{91}{2}-\frac{0.0625}{\frac{1}{4}}
Multiply -\frac{1}{4} and -1 to get \frac{1}{4}.
\frac{91}{2}-0.0625\times 4
Divide 0.0625 by \frac{1}{4} by multiplying 0.0625 by the reciprocal of \frac{1}{4}.
\frac{91}{2}-0.25
Multiply 0.0625 and 4 to get 0.25.
\frac{91}{2}-\frac{1}{4}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{182}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{91}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{182-1}{4}
Since \frac{182}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{181}{4}
Subtract 1 from 182 to get 181.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}