Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-2u^{2}+5u-3+7u+1
Combine -6u^{2} and 4u^{2} to get -2u^{2}.
-2u^{2}+12u-3+1
Combine 5u and 7u to get 12u.
-2u^{2}+12u-2
Add -3 and 1 to get -2.
factor(-2u^{2}+5u-3+7u+1)
Combine -6u^{2} and 4u^{2} to get -2u^{2}.
factor(-2u^{2}+12u-3+1)
Combine 5u and 7u to get 12u.
factor(-2u^{2}+12u-2)
Add -3 and 1 to get -2.
-2u^{2}+12u-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-12±\sqrt{144-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square 12.
u=\frac{-12±\sqrt{144+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
u=\frac{-12±\sqrt{144-16}}{2\left(-2\right)}
Multiply 8 times -2.
u=\frac{-12±\sqrt{128}}{2\left(-2\right)}
Add 144 to -16.
u=\frac{-12±8\sqrt{2}}{2\left(-2\right)}
Take the square root of 128.
u=\frac{-12±8\sqrt{2}}{-4}
Multiply 2 times -2.
u=\frac{8\sqrt{2}-12}{-4}
Now solve the equation u=\frac{-12±8\sqrt{2}}{-4} when ± is plus. Add -12 to 8\sqrt{2}.
u=3-2\sqrt{2}
Divide -12+8\sqrt{2} by -4.
u=\frac{-8\sqrt{2}-12}{-4}
Now solve the equation u=\frac{-12±8\sqrt{2}}{-4} when ± is minus. Subtract 8\sqrt{2} from -12.
u=2\sqrt{2}+3
Divide -12-8\sqrt{2} by -4.
-2u^{2}+12u-2=-2\left(u-\left(3-2\sqrt{2}\right)\right)\left(u-\left(2\sqrt{2}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-2\sqrt{2} for x_{1} and 3+2\sqrt{2} for x_{2}.