( - 6 + 6,4 \div 10 ) : ( - 8 ) \cdot ( - 3 ) =
Evaluate
-2,01
Factor
-2,01
Share
Copied to clipboard
\frac{-6+\frac{64}{100}}{-8}\left(-3\right)
Expand \frac{6,4}{10} by multiplying both numerator and the denominator by 10.
\frac{-6+\frac{16}{25}}{-8}\left(-3\right)
Reduce the fraction \frac{64}{100} to lowest terms by extracting and canceling out 4.
\frac{-\frac{150}{25}+\frac{16}{25}}{-8}\left(-3\right)
Convert -6 to fraction -\frac{150}{25}.
\frac{\frac{-150+16}{25}}{-8}\left(-3\right)
Since -\frac{150}{25} and \frac{16}{25} have the same denominator, add them by adding their numerators.
\frac{-\frac{134}{25}}{-8}\left(-3\right)
Add -150 and 16 to get -134.
\frac{-134}{25\left(-8\right)}\left(-3\right)
Express \frac{-\frac{134}{25}}{-8} as a single fraction.
\frac{-134}{-200}\left(-3\right)
Multiply 25 and -8 to get -200.
\frac{67}{100}\left(-3\right)
Reduce the fraction \frac{-134}{-200} to lowest terms by extracting and canceling out -2.
\frac{67\left(-3\right)}{100}
Express \frac{67}{100}\left(-3\right) as a single fraction.
\frac{-201}{100}
Multiply 67 and -3 to get -201.
-\frac{201}{100}
Fraction \frac{-201}{100} can be rewritten as -\frac{201}{100} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}