Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2y^{2}+7y-6+4y+2
Combine -5y^{2} and 3y^{2} to get -2y^{2}.
-2y^{2}+11y-6+2
Combine 7y and 4y to get 11y.
-2y^{2}+11y-4
Add -6 and 2 to get -4.
factor(-2y^{2}+7y-6+4y+2)
Combine -5y^{2} and 3y^{2} to get -2y^{2}.
factor(-2y^{2}+11y-6+2)
Combine 7y and 4y to get 11y.
factor(-2y^{2}+11y-4)
Add -6 and 2 to get -4.
-2y^{2}+11y-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-11±\sqrt{11^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-11±\sqrt{121-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 11.
y=\frac{-11±\sqrt{121+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
y=\frac{-11±\sqrt{121-32}}{2\left(-2\right)}
Multiply 8 times -4.
y=\frac{-11±\sqrt{89}}{2\left(-2\right)}
Add 121 to -32.
y=\frac{-11±\sqrt{89}}{-4}
Multiply 2 times -2.
y=\frac{\sqrt{89}-11}{-4}
Now solve the equation y=\frac{-11±\sqrt{89}}{-4} when ± is plus. Add -11 to \sqrt{89}.
y=\frac{11-\sqrt{89}}{4}
Divide -11+\sqrt{89} by -4.
y=\frac{-\sqrt{89}-11}{-4}
Now solve the equation y=\frac{-11±\sqrt{89}}{-4} when ± is minus. Subtract \sqrt{89} from -11.
y=\frac{\sqrt{89}+11}{4}
Divide -11-\sqrt{89} by -4.
-2y^{2}+11y-4=-2\left(y-\frac{11-\sqrt{89}}{4}\right)\left(y-\frac{\sqrt{89}+11}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11-\sqrt{89}}{4} for x_{1} and \frac{11+\sqrt{89}}{4} for x_{2}.