Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-9v^{2}-v+3+6
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
-9v^{2}-v+9
Add 3 and 6 to get 9.
factor(-9v^{2}-v+3+6)
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
factor(-9v^{2}-v+9)
Add 3 and 6 to get 9.
-9v^{2}-v+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-1\right)±\sqrt{1-4\left(-9\right)\times 9}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-1\right)±\sqrt{1+36\times 9}}{2\left(-9\right)}
Multiply -4 times -9.
v=\frac{-\left(-1\right)±\sqrt{1+324}}{2\left(-9\right)}
Multiply 36 times 9.
v=\frac{-\left(-1\right)±\sqrt{325}}{2\left(-9\right)}
Add 1 to 324.
v=\frac{-\left(-1\right)±5\sqrt{13}}{2\left(-9\right)}
Take the square root of 325.
v=\frac{1±5\sqrt{13}}{2\left(-9\right)}
The opposite of -1 is 1.
v=\frac{1±5\sqrt{13}}{-18}
Multiply 2 times -9.
v=\frac{5\sqrt{13}+1}{-18}
Now solve the equation v=\frac{1±5\sqrt{13}}{-18} when ± is plus. Add 1 to 5\sqrt{13}.
v=\frac{-5\sqrt{13}-1}{18}
Divide 1+5\sqrt{13} by -18.
v=\frac{1-5\sqrt{13}}{-18}
Now solve the equation v=\frac{1±5\sqrt{13}}{-18} when ± is minus. Subtract 5\sqrt{13} from 1.
v=\frac{5\sqrt{13}-1}{18}
Divide 1-5\sqrt{13} by -18.
-9v^{2}-v+9=-9\left(v-\frac{-5\sqrt{13}-1}{18}\right)\left(v-\frac{5\sqrt{13}-1}{18}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-5\sqrt{13}}{18} for x_{1} and \frac{-1+5\sqrt{13}}{18} for x_{2}.