Evaluate
9-3d-d^{2}-6d^{3}
Differentiate w.r.t. d
-18d^{2}-2d-3
Share
Copied to clipboard
-3d+3-6d^{3}-d^{2}+6
Combine -5d and 2d to get -3d.
-3d+9-6d^{3}-d^{2}
Add 3 and 6 to get 9.
\frac{\mathrm{d}}{\mathrm{d}d}(-3d+3-6d^{3}-d^{2}+6)
Combine -5d and 2d to get -3d.
\frac{\mathrm{d}}{\mathrm{d}d}(-3d+9-6d^{3}-d^{2})
Add 3 and 6 to get 9.
-3d^{1-1}+3\left(-6\right)d^{3-1}+2\left(-1\right)d^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-3d^{0}+3\left(-6\right)d^{3-1}+2\left(-1\right)d^{2-1}
Subtract 1 from 1.
-3d^{0}-18d^{3-1}+2\left(-1\right)d^{2-1}
Multiply 3 times -6.
-3d^{0}-18d^{2}+2\left(-1\right)d^{2-1}
Subtract 1 from 3.
-3d^{0}-18d^{2}-2d^{2-1}
Multiply 3 times -6.
-3d^{0}-18d^{2}-2d^{1}
Subtract 1 from 2.
-3d^{0}-18d^{2}-2d
For any term t, t^{1}=t.
-3-18d^{2}-2d
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}