Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-5\left(\left(-\frac{1}{85}+\frac{17+8}{17}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
-5\left(\left(-\frac{1}{85}+\frac{25}{17}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Add 17 and 8 to get 25.
-5\left(\left(-\frac{1}{85}+\frac{125}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Least common multiple of 85 and 17 is 85. Convert -\frac{1}{85} and \frac{25}{17} to fractions with denominator 85.
-5\left(\left(\frac{-1+125}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Since -\frac{1}{85} and \frac{125}{85} have the same denominator, add them by adding their numerators.
-5\left(\left(\frac{124}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Add -1 and 125 to get 124.
-5\left(\left(\frac{124}{85}-\frac{17}{85}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Least common multiple of 85 and 5 is 85. Convert \frac{124}{85} and \frac{1}{5} to fractions with denominator 85.
-5\left(\frac{124-17}{85}\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Since \frac{124}{85} and \frac{17}{85} have the same denominator, subtract them by subtracting their numerators.
-5\left(\frac{107}{85}\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Subtract 17 from 124 to get 107.
-5\left(\frac{107\times 17}{85}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Express \frac{107}{85}\times 17 as a single fraction.
-5\left(\frac{1819}{85}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Multiply 107 and 17 to get 1819.
-5\left(\frac{107}{5}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Reduce the fraction \frac{1819}{85} to lowest terms by extracting and canceling out 17.
-5\left(\frac{107}{5}-\frac{16}{25}\right)-|\left(-2\right)^{4}|
Calculate -\frac{4}{5} to the power of 2 and get \frac{16}{25}.
-5\left(\frac{535}{25}-\frac{16}{25}\right)-|\left(-2\right)^{4}|
Least common multiple of 5 and 25 is 25. Convert \frac{107}{5} and \frac{16}{25} to fractions with denominator 25.
-5\times \frac{535-16}{25}-|\left(-2\right)^{4}|
Since \frac{535}{25} and \frac{16}{25} have the same denominator, subtract them by subtracting their numerators.
-5\times \frac{519}{25}-|\left(-2\right)^{4}|
Subtract 16 from 535 to get 519.
\frac{-5\times 519}{25}-|\left(-2\right)^{4}|
Express -5\times \frac{519}{25} as a single fraction.
\frac{-2595}{25}-|\left(-2\right)^{4}|
Multiply -5 and 519 to get -2595.
-\frac{519}{5}-|\left(-2\right)^{4}|
Reduce the fraction \frac{-2595}{25} to lowest terms by extracting and canceling out 5.
-\frac{519}{5}-|16|
Calculate -2 to the power of 4 and get 16.
-\frac{519}{5}-16
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 16 is 16.
-\frac{519}{5}-\frac{80}{5}
Convert 16 to fraction \frac{80}{5}.
\frac{-519-80}{5}
Since -\frac{519}{5} and \frac{80}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{599}{5}
Subtract 80 from -519 to get -599.